Step |
Hyp |
Ref |
Expression |
1 |
|
gpgnbgr.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
2 |
|
gpgnbgr.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
3 |
|
gpgnbgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
4 |
|
gpgnbgr.u |
⊢ 𝑈 = ( 𝐺 NeighbVtx 𝑋 ) |
5 |
|
gpgnbgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
6 |
|
5eluz3 |
⊢ 5 ∈ ( ℤ≥ ‘ 3 ) |
7 |
|
eleq1 |
⊢ ( 𝑁 = 5 → ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ↔ 5 ∈ ( ℤ≥ ‘ 3 ) ) ) |
8 |
6 7
|
mpbiri |
⊢ ( 𝑁 = 5 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
9 |
8
|
anim1i |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ) |
10 |
|
eqid |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 ) |
11 |
10 1 2 3
|
gpgvtxel |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ 𝑉 ↔ ∃ 𝑎 ∈ { 0 , 1 } ∃ 𝑏 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑎 , 𝑏 〉 ) ) |
12 |
9 11
|
syl |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ 𝑉 ↔ ∃ 𝑎 ∈ { 0 , 1 } ∃ 𝑏 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑎 , 𝑏 〉 ) ) |
13 |
12
|
biimp3a |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑎 ∈ { 0 , 1 } ∃ 𝑏 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑎 , 𝑏 〉 ) |
14 |
|
elpri |
⊢ ( 𝑎 ∈ { 0 , 1 } → ( 𝑎 = 0 ∨ 𝑎 = 1 ) ) |
15 |
|
opeq1 |
⊢ ( 𝑎 = 0 → 〈 𝑎 , 𝑏 〉 = 〈 0 , 𝑏 〉 ) |
16 |
15
|
eqeq2d |
⊢ ( 𝑎 = 0 → ( 𝑋 = 〈 𝑎 , 𝑏 〉 ↔ 𝑋 = 〈 0 , 𝑏 〉 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝑎 = 0 ∧ ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 ↔ 𝑋 = 〈 0 , 𝑏 〉 ) ) |
18 |
|
c0ex |
⊢ 0 ∈ V |
19 |
|
vex |
⊢ 𝑏 ∈ V |
20 |
18 19
|
op1std |
⊢ ( 𝑋 = 〈 0 , 𝑏 〉 → ( 1st ‘ 𝑋 ) = 0 ) |
21 |
|
4z |
⊢ 4 ∈ ℤ |
22 |
|
5nn |
⊢ 5 ∈ ℕ |
23 |
22
|
nnzi |
⊢ 5 ∈ ℤ |
24 |
|
4re |
⊢ 4 ∈ ℝ |
25 |
|
5re |
⊢ 5 ∈ ℝ |
26 |
|
4lt5 |
⊢ 4 < 5 |
27 |
24 25 26
|
ltleii |
⊢ 4 ≤ 5 |
28 |
|
eluz2 |
⊢ ( 5 ∈ ( ℤ≥ ‘ 4 ) ↔ ( 4 ∈ ℤ ∧ 5 ∈ ℤ ∧ 4 ≤ 5 ) ) |
29 |
21 23 27 28
|
mpbir3an |
⊢ 5 ∈ ( ℤ≥ ‘ 4 ) |
30 |
|
eleq1 |
⊢ ( 𝑁 = 5 → ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ↔ 5 ∈ ( ℤ≥ ‘ 4 ) ) ) |
31 |
29 30
|
mpbiri |
⊢ ( 𝑁 = 5 → 𝑁 ∈ ( ℤ≥ ‘ 4 ) ) |
32 |
1 2 3 4 5
|
gpg5nbgrvtx03star |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |
33 |
31 32
|
sylanl1 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |
34 |
33
|
exp43 |
⊢ ( 𝑁 = 5 → ( 𝐾 ∈ 𝐽 → ( 𝑋 ∈ 𝑉 → ( ( 1st ‘ 𝑋 ) = 0 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) ) |
35 |
34
|
3imp |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ( 1st ‘ 𝑋 ) = 0 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
36 |
20 35
|
syl5 |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 0 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝑎 = 0 ∧ ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 0 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
38 |
17 37
|
sylbid |
⊢ ( ( 𝑎 = 0 ∧ ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
39 |
38
|
ex |
⊢ ( 𝑎 = 0 → ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) |
40 |
|
opeq1 |
⊢ ( 𝑎 = 1 → 〈 𝑎 , 𝑏 〉 = 〈 1 , 𝑏 〉 ) |
41 |
40
|
eqeq2d |
⊢ ( 𝑎 = 1 → ( 𝑋 = 〈 𝑎 , 𝑏 〉 ↔ 𝑋 = 〈 1 , 𝑏 〉 ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝑎 = 1 ∧ ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 ↔ 𝑋 = 〈 1 , 𝑏 〉 ) ) |
43 |
|
1ex |
⊢ 1 ∈ V |
44 |
43 19
|
op1std |
⊢ ( 𝑋 = 〈 1 , 𝑏 〉 → ( 1st ‘ 𝑋 ) = 1 ) |
45 |
1 2 3 4
|
gpg3nbgrvtx1 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ♯ ‘ 𝑈 ) = 3 ) |
46 |
8 45
|
sylanl1 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ♯ ‘ 𝑈 ) = 3 ) |
47 |
|
eqid |
⊢ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 |
48 |
1
|
eleq2i |
⊢ ( 𝐾 ∈ 𝐽 ↔ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
49 |
48
|
biimpi |
⊢ ( 𝐾 ∈ 𝐽 → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
50 |
|
gpgusgra |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph ) |
51 |
2 50
|
eqeltrid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → 𝐺 ∈ USGraph ) |
52 |
8 49 51
|
syl2an |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) → 𝐺 ∈ USGraph ) |
53 |
52
|
adantr |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → 𝐺 ∈ USGraph ) |
54 |
5
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) → 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ≠ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ) |
55 |
54
|
neneqd |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) → ¬ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ) |
56 |
55
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 → ¬ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ) ) |
57 |
53 56
|
syl |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 → ¬ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ) ) |
58 |
47 57
|
mt2i |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ¬ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) |
59 |
|
df-nel |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ ¬ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) |
60 |
58 59
|
sylibr |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
61 |
|
fvexd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) → ( 2nd ‘ 𝑋 ) ∈ V ) |
62 |
1 2 3 5
|
gpg5nbgrvtx13starlem1 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 2nd ‘ 𝑋 ) ∈ V ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
63 |
61 62
|
sylan2 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
64 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) → 𝑋 ∈ 𝑉 ) |
65 |
9 64
|
anim12i |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) ) |
66 |
10 1 2 3
|
gpgvtxel2 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) → ( 2nd ‘ 𝑋 ) ∈ ( 0 ..^ 𝑁 ) ) |
67 |
|
elfzoelz |
⊢ ( ( 2nd ‘ 𝑋 ) ∈ ( 0 ..^ 𝑁 ) → ( 2nd ‘ 𝑋 ) ∈ ℤ ) |
68 |
65 66 67
|
3syl |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( 2nd ‘ 𝑋 ) ∈ ℤ ) |
69 |
1 2 3 5
|
gpg5nbgrvtx13starlem2 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 2nd ‘ 𝑋 ) ∈ ℤ ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
70 |
68 69
|
syldan |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
71 |
|
opex |
⊢ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∈ V |
72 |
|
opex |
⊢ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∈ V |
73 |
|
opex |
⊢ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∈ V |
74 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ) |
75 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
76 |
74 75
|
syl |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
77 |
|
preq2 |
⊢ ( 𝑦 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ) |
78 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
79 |
77 78
|
syl |
⊢ ( 𝑦 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
80 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) |
81 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
82 |
80 81
|
syl |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
83 |
71 72 73 76 79 82
|
raltp |
⊢ ( ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
84 |
60 63 70 83
|
syl3anbrc |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) |
85 |
|
prcom |
⊢ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } |
86 |
|
neleq1 |
⊢ ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
87 |
85 86
|
ax-mp |
⊢ ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
88 |
63 87
|
sylibr |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
89 |
|
eqid |
⊢ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 |
90 |
5
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 ) → 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ≠ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) |
91 |
90
|
neneqd |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 ) → ¬ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) |
92 |
91
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 → ¬ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) ) |
93 |
53 92
|
syl |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 → ¬ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) ) |
94 |
89 93
|
mt2i |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ¬ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 ) |
95 |
|
df-nel |
⊢ ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ↔ ¬ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 ) |
96 |
94 95
|
sylibr |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
97 |
1 2 3 5
|
gpg5nbgrvtx13starlem3 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 2nd ‘ 𝑋 ) ∈ V ) → { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
98 |
61 97
|
sylan2 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
99 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ) |
100 |
|
neleq1 |
⊢ ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
101 |
99 100
|
syl |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
102 |
|
preq2 |
⊢ ( 𝑦 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ) |
103 |
|
neleq1 |
⊢ ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
104 |
102 103
|
syl |
⊢ ( 𝑦 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
105 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) |
106 |
|
neleq1 |
⊢ ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
107 |
105 106
|
syl |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
108 |
71 72 73 101 104 107
|
raltp |
⊢ ( ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ∧ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ∧ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
109 |
88 96 98 108
|
syl3anbrc |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ) |
110 |
|
prcom |
⊢ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } |
111 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
112 |
110 111
|
ax-mp |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
113 |
70 112
|
sylibr |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
114 |
|
prcom |
⊢ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } |
115 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
116 |
114 115
|
ax-mp |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
117 |
98 116
|
sylibr |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
118 |
|
eqid |
⊢ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 |
119 |
5
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) → 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ≠ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) |
120 |
119
|
neneqd |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) → ¬ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) |
121 |
120
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 → ¬ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) |
122 |
53 121
|
syl |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 → ¬ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) |
123 |
118 122
|
mt2i |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ¬ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) |
124 |
|
df-nel |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ ¬ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) |
125 |
123 124
|
sylibr |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
126 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ) |
127 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
128 |
126 127
|
syl |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
129 |
|
preq2 |
⊢ ( 𝑦 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ) |
130 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
131 |
129 130
|
syl |
⊢ ( 𝑦 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
132 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) |
133 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
134 |
132 133
|
syl |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
135 |
71 72 73 128 131 134
|
raltp |
⊢ ( ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
136 |
113 117 125 135
|
syl3anbrc |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) |
137 |
|
preq1 |
⊢ ( 𝑥 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → { 𝑥 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ) |
138 |
|
neleq1 |
⊢ ( { 𝑥 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
139 |
137 138
|
syl |
⊢ ( 𝑥 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
140 |
139
|
ralbidv |
⊢ ( 𝑥 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → ( ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
141 |
|
preq1 |
⊢ ( 𝑥 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → { 𝑥 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ) |
142 |
|
neleq1 |
⊢ ( { 𝑥 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
143 |
141 142
|
syl |
⊢ ( 𝑥 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
144 |
143
|
ralbidv |
⊢ ( 𝑥 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
145 |
|
preq1 |
⊢ ( 𝑥 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → { 𝑥 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ) |
146 |
|
neleq1 |
⊢ ( { 𝑥 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
147 |
145 146
|
syl |
⊢ ( 𝑥 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
148 |
147
|
ralbidv |
⊢ ( 𝑥 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → ( ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
149 |
71 72 73 140 144 148
|
raltp |
⊢ ( ∀ 𝑥 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ( ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ∧ ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ∧ ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
150 |
84 109 136 149
|
syl3anbrc |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ∀ 𝑥 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ) |
151 |
1 2 3 4
|
gpgnbgrvtx1 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → 𝑈 = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) |
152 |
8 151
|
sylanl1 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → 𝑈 = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) |
153 |
152
|
raleqdv |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |
154 |
152 153
|
raleqbidv |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑥 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |
155 |
150 154
|
mpbird |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) |
156 |
46 155
|
jca |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |
157 |
156
|
exp43 |
⊢ ( 𝑁 = 5 → ( 𝐾 ∈ 𝐽 → ( 𝑋 ∈ 𝑉 → ( ( 1st ‘ 𝑋 ) = 1 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) ) |
158 |
157
|
3imp |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ( 1st ‘ 𝑋 ) = 1 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
159 |
44 158
|
syl5 |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 1 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
160 |
159
|
adantl |
⊢ ( ( 𝑎 = 1 ∧ ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 1 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
161 |
42 160
|
sylbid |
⊢ ( ( 𝑎 = 1 ∧ ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
162 |
161
|
ex |
⊢ ( 𝑎 = 1 → ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) |
163 |
39 162
|
jaoi |
⊢ ( ( 𝑎 = 0 ∨ 𝑎 = 1 ) → ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) |
164 |
14 163
|
syl |
⊢ ( 𝑎 ∈ { 0 , 1 } → ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) |
165 |
164
|
impcom |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑎 ∈ { 0 , 1 } ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
166 |
165
|
a1d |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑎 ∈ { 0 , 1 } ) → ( 𝑏 ∈ ( 0 ..^ 𝑁 ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) |
167 |
166
|
expimpd |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑎 ∈ { 0 , 1 } ∧ 𝑏 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) |
168 |
167
|
rexlimdvv |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ∃ 𝑎 ∈ { 0 , 1 } ∃ 𝑏 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
169 |
13 168
|
mpd |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |