| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgnbgr.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 2 |
|
gpgnbgr.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
| 3 |
|
gpgnbgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 4 |
|
gpgnbgr.u |
⊢ 𝑈 = ( 𝐺 NeighbVtx 𝑋 ) |
| 5 |
|
gpgnbgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 6 |
|
5eluz3 |
⊢ 5 ∈ ( ℤ≥ ‘ 3 ) |
| 7 |
|
eleq1 |
⊢ ( 𝑁 = 5 → ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ↔ 5 ∈ ( ℤ≥ ‘ 3 ) ) ) |
| 8 |
6 7
|
mpbiri |
⊢ ( 𝑁 = 5 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 9 |
8
|
anim1i |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ) |
| 10 |
|
eqid |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 ) |
| 11 |
10 1 2 3
|
gpgvtxel |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ 𝑉 ↔ ∃ 𝑎 ∈ { 0 , 1 } ∃ 𝑏 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑎 , 𝑏 〉 ) ) |
| 12 |
9 11
|
syl |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ 𝑉 ↔ ∃ 𝑎 ∈ { 0 , 1 } ∃ 𝑏 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑎 , 𝑏 〉 ) ) |
| 13 |
12
|
biimp3a |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑎 ∈ { 0 , 1 } ∃ 𝑏 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑎 , 𝑏 〉 ) |
| 14 |
|
elpri |
⊢ ( 𝑎 ∈ { 0 , 1 } → ( 𝑎 = 0 ∨ 𝑎 = 1 ) ) |
| 15 |
|
opeq1 |
⊢ ( 𝑎 = 0 → 〈 𝑎 , 𝑏 〉 = 〈 0 , 𝑏 〉 ) |
| 16 |
15
|
eqeq2d |
⊢ ( 𝑎 = 0 → ( 𝑋 = 〈 𝑎 , 𝑏 〉 ↔ 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑎 = 0 ∧ ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 ↔ 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 18 |
|
c0ex |
⊢ 0 ∈ V |
| 19 |
|
vex |
⊢ 𝑏 ∈ V |
| 20 |
18 19
|
op1std |
⊢ ( 𝑋 = 〈 0 , 𝑏 〉 → ( 1st ‘ 𝑋 ) = 0 ) |
| 21 |
|
4z |
⊢ 4 ∈ ℤ |
| 22 |
|
5nn |
⊢ 5 ∈ ℕ |
| 23 |
22
|
nnzi |
⊢ 5 ∈ ℤ |
| 24 |
|
4re |
⊢ 4 ∈ ℝ |
| 25 |
|
5re |
⊢ 5 ∈ ℝ |
| 26 |
|
4lt5 |
⊢ 4 < 5 |
| 27 |
24 25 26
|
ltleii |
⊢ 4 ≤ 5 |
| 28 |
|
eluz2 |
⊢ ( 5 ∈ ( ℤ≥ ‘ 4 ) ↔ ( 4 ∈ ℤ ∧ 5 ∈ ℤ ∧ 4 ≤ 5 ) ) |
| 29 |
21 23 27 28
|
mpbir3an |
⊢ 5 ∈ ( ℤ≥ ‘ 4 ) |
| 30 |
|
eleq1 |
⊢ ( 𝑁 = 5 → ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ↔ 5 ∈ ( ℤ≥ ‘ 4 ) ) ) |
| 31 |
29 30
|
mpbiri |
⊢ ( 𝑁 = 5 → 𝑁 ∈ ( ℤ≥ ‘ 4 ) ) |
| 32 |
1 2 3 4 5
|
gpg5nbgrvtx03star |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |
| 33 |
31 32
|
sylanl1 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |
| 34 |
33
|
exp43 |
⊢ ( 𝑁 = 5 → ( 𝐾 ∈ 𝐽 → ( 𝑋 ∈ 𝑉 → ( ( 1st ‘ 𝑋 ) = 0 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) ) |
| 35 |
34
|
3imp |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ( 1st ‘ 𝑋 ) = 0 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
| 36 |
20 35
|
syl5 |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 0 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝑎 = 0 ∧ ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 0 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
| 38 |
17 37
|
sylbid |
⊢ ( ( 𝑎 = 0 ∧ ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
| 39 |
38
|
ex |
⊢ ( 𝑎 = 0 → ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) |
| 40 |
|
opeq1 |
⊢ ( 𝑎 = 1 → 〈 𝑎 , 𝑏 〉 = 〈 1 , 𝑏 〉 ) |
| 41 |
40
|
eqeq2d |
⊢ ( 𝑎 = 1 → ( 𝑋 = 〈 𝑎 , 𝑏 〉 ↔ 𝑋 = 〈 1 , 𝑏 〉 ) ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝑎 = 1 ∧ ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 ↔ 𝑋 = 〈 1 , 𝑏 〉 ) ) |
| 43 |
|
1ex |
⊢ 1 ∈ V |
| 44 |
43 19
|
op1std |
⊢ ( 𝑋 = 〈 1 , 𝑏 〉 → ( 1st ‘ 𝑋 ) = 1 ) |
| 45 |
1 2 3 4
|
gpg3nbgrvtx1 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ♯ ‘ 𝑈 ) = 3 ) |
| 46 |
8 45
|
sylanl1 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ♯ ‘ 𝑈 ) = 3 ) |
| 47 |
|
eqid |
⊢ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 |
| 48 |
1
|
eleq2i |
⊢ ( 𝐾 ∈ 𝐽 ↔ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 49 |
48
|
biimpi |
⊢ ( 𝐾 ∈ 𝐽 → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 50 |
|
gpgusgra |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph ) |
| 51 |
2 50
|
eqeltrid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → 𝐺 ∈ USGraph ) |
| 52 |
8 49 51
|
syl2an |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) → 𝐺 ∈ USGraph ) |
| 53 |
52
|
adantr |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → 𝐺 ∈ USGraph ) |
| 54 |
5
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) → 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ≠ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ) |
| 55 |
54
|
neneqd |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) → ¬ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ) |
| 56 |
55
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 → ¬ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ) ) |
| 57 |
53 56
|
syl |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 → ¬ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ) ) |
| 58 |
47 57
|
mt2i |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ¬ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) |
| 59 |
|
df-nel |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ ¬ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) |
| 60 |
58 59
|
sylibr |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 61 |
|
fvexd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) → ( 2nd ‘ 𝑋 ) ∈ V ) |
| 62 |
1 2 3 5
|
gpg5nbgrvtx13starlem1 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 2nd ‘ 𝑋 ) ∈ V ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
| 63 |
61 62
|
sylan2 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
| 64 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) → 𝑋 ∈ 𝑉 ) |
| 65 |
9 64
|
anim12i |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) ) |
| 66 |
10 1 2 3
|
gpgvtxel2 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) → ( 2nd ‘ 𝑋 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 67 |
|
elfzoelz |
⊢ ( ( 2nd ‘ 𝑋 ) ∈ ( 0 ..^ 𝑁 ) → ( 2nd ‘ 𝑋 ) ∈ ℤ ) |
| 68 |
65 66 67
|
3syl |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( 2nd ‘ 𝑋 ) ∈ ℤ ) |
| 69 |
1 2 3 5
|
gpg5nbgrvtx13starlem2 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 2nd ‘ 𝑋 ) ∈ ℤ ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 70 |
68 69
|
syldan |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 71 |
|
opex |
⊢ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∈ V |
| 72 |
|
opex |
⊢ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∈ V |
| 73 |
|
opex |
⊢ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∈ V |
| 74 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ) |
| 75 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 76 |
74 75
|
syl |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 77 |
|
preq2 |
⊢ ( 𝑦 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ) |
| 78 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
| 79 |
77 78
|
syl |
⊢ ( 𝑦 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
| 80 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) |
| 81 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 82 |
80 81
|
syl |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 83 |
71 72 73 76 79 82
|
raltp |
⊢ ( ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 84 |
60 63 70 83
|
syl3anbrc |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) |
| 85 |
|
prcom |
⊢ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } |
| 86 |
|
neleq1 |
⊢ ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
| 87 |
85 86
|
ax-mp |
⊢ ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
| 88 |
63 87
|
sylibr |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 89 |
|
eqid |
⊢ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 |
| 90 |
5
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 ) → 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ≠ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) |
| 91 |
90
|
neneqd |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 ) → ¬ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) |
| 92 |
91
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 → ¬ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) ) |
| 93 |
53 92
|
syl |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 → ¬ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) ) |
| 94 |
89 93
|
mt2i |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ¬ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 ) |
| 95 |
|
df-nel |
⊢ ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ↔ ¬ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 ) |
| 96 |
94 95
|
sylibr |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
| 97 |
1 2 3 5
|
gpg5nbgrvtx13starlem3 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 2nd ‘ 𝑋 ) ∈ V ) → { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 98 |
61 97
|
sylan2 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 99 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ) |
| 100 |
|
neleq1 |
⊢ ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 101 |
99 100
|
syl |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 102 |
|
preq2 |
⊢ ( 𝑦 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ) |
| 103 |
|
neleq1 |
⊢ ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
| 104 |
102 103
|
syl |
⊢ ( 𝑦 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
| 105 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) |
| 106 |
|
neleq1 |
⊢ ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 107 |
105 106
|
syl |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 108 |
71 72 73 101 104 107
|
raltp |
⊢ ( ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ ( { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ∧ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ∧ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 109 |
88 96 98 108
|
syl3anbrc |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ) |
| 110 |
|
prcom |
⊢ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } |
| 111 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 112 |
110 111
|
ax-mp |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 113 |
70 112
|
sylibr |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 114 |
|
prcom |
⊢ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } |
| 115 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 116 |
114 115
|
ax-mp |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 117 |
98 116
|
sylibr |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
| 118 |
|
eqid |
⊢ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 |
| 119 |
5
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) → 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ≠ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) |
| 120 |
119
|
neneqd |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) → ¬ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) |
| 121 |
120
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 → ¬ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) |
| 122 |
53 121
|
syl |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 → ¬ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) |
| 123 |
118 122
|
mt2i |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ¬ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) |
| 124 |
|
df-nel |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ ¬ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) |
| 125 |
123 124
|
sylibr |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 126 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ) |
| 127 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 128 |
126 127
|
syl |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 129 |
|
preq2 |
⊢ ( 𝑦 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ) |
| 130 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
| 131 |
129 130
|
syl |
⊢ ( 𝑦 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
| 132 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) |
| 133 |
|
neleq1 |
⊢ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 134 |
132 133
|
syl |
⊢ ( 𝑦 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 135 |
71 72 73 128 131 134
|
raltp |
⊢ ( ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ ( { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ∧ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 136 |
113 117 125 135
|
syl3anbrc |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) |
| 137 |
|
preq1 |
⊢ ( 𝑥 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → { 𝑥 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ) |
| 138 |
|
neleq1 |
⊢ ( { 𝑥 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 139 |
137 138
|
syl |
⊢ ( 𝑥 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 140 |
139
|
ralbidv |
⊢ ( 𝑥 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 → ( ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 141 |
|
preq1 |
⊢ ( 𝑥 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → { 𝑥 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ) |
| 142 |
|
neleq1 |
⊢ ( { 𝑥 , 𝑦 } = { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 143 |
141 142
|
syl |
⊢ ( 𝑥 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 144 |
143
|
ralbidv |
⊢ ( 𝑥 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 145 |
|
preq1 |
⊢ ( 𝑥 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → { 𝑥 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ) |
| 146 |
|
neleq1 |
⊢ ( { 𝑥 , 𝑦 } = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 147 |
145 146
|
syl |
⊢ ( 𝑥 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 148 |
147
|
ralbidv |
⊢ ( 𝑥 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 → ( ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 149 |
71 72 73 140 144 148
|
raltp |
⊢ ( ∀ 𝑥 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ( ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ∧ ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ∧ ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 150 |
84 109 136 149
|
syl3anbrc |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ∀ 𝑥 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ) |
| 151 |
1 2 3 4
|
gpgnbgrvtx1 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → 𝑈 = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) |
| 152 |
8 151
|
sylanl1 |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → 𝑈 = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) |
| 153 |
152
|
raleqdv |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |
| 154 |
152 153
|
raleqbidv |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑥 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ∀ 𝑦 ∈ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |
| 155 |
150 154
|
mpbird |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) |
| 156 |
46 155
|
jca |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |
| 157 |
156
|
exp43 |
⊢ ( 𝑁 = 5 → ( 𝐾 ∈ 𝐽 → ( 𝑋 ∈ 𝑉 → ( ( 1st ‘ 𝑋 ) = 1 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) ) |
| 158 |
157
|
3imp |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ( 1st ‘ 𝑋 ) = 1 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
| 159 |
44 158
|
syl5 |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 1 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
| 160 |
159
|
adantl |
⊢ ( ( 𝑎 = 1 ∧ ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 1 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
| 161 |
42 160
|
sylbid |
⊢ ( ( 𝑎 = 1 ∧ ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
| 162 |
161
|
ex |
⊢ ( 𝑎 = 1 → ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) |
| 163 |
39 162
|
jaoi |
⊢ ( ( 𝑎 = 0 ∨ 𝑎 = 1 ) → ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) |
| 164 |
14 163
|
syl |
⊢ ( 𝑎 ∈ { 0 , 1 } → ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) |
| 165 |
164
|
impcom |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑎 ∈ { 0 , 1 } ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
| 166 |
165
|
a1d |
⊢ ( ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑎 ∈ { 0 , 1 } ) → ( 𝑏 ∈ ( 0 ..^ 𝑁 ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) |
| 167 |
166
|
expimpd |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑎 ∈ { 0 , 1 } ∧ 𝑏 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) ) |
| 168 |
167
|
rexlimdvv |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ∃ 𝑎 ∈ { 0 , 1 } ∃ 𝑏 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑎 , 𝑏 〉 → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) ) |
| 169 |
13 168
|
mpd |
⊢ ( ( 𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |