Step |
Hyp |
Ref |
Expression |
1 |
|
gpgnbgr.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
2 |
|
gpgnbgr.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
3 |
|
gpgnbgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
4 |
|
gpgnbgr.u |
⊢ 𝑈 = ( 𝐺 NeighbVtx 𝑋 ) |
5 |
1 2 3 4
|
gpgnbgrvtx1 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → 𝑈 = { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) |
6 |
5
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) ) |
7 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
8 |
7
|
a1i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → 1 ≠ 0 ) |
9 |
8
|
orcd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( 1 ≠ 0 ∨ ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) ≠ ( 2nd ‘ 𝑋 ) ) ) |
10 |
|
1ex |
⊢ 1 ∈ V |
11 |
|
ovex |
⊢ ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) ∈ V |
12 |
10 11
|
opthne |
⊢ ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ≠ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ↔ ( 1 ≠ 0 ∨ ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) ≠ ( 2nd ‘ 𝑋 ) ) ) |
13 |
9 12
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ≠ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) |
14 |
|
0ne1 |
⊢ 0 ≠ 1 |
15 |
14
|
a1i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → 0 ≠ 1 ) |
16 |
15
|
orcd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( 0 ≠ 1 ∨ ( 2nd ‘ 𝑋 ) ≠ ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) ) ) |
17 |
|
c0ex |
⊢ 0 ∈ V |
18 |
|
fvex |
⊢ ( 2nd ‘ 𝑋 ) ∈ V |
19 |
17 18
|
opthne |
⊢ ( 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ≠ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ↔ ( 0 ≠ 1 ∨ ( 2nd ‘ 𝑋 ) ≠ ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) ) ) |
20 |
16 19
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ≠ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) |
21 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
22 |
1
|
eleq2i |
⊢ ( 𝐾 ∈ 𝐽 ↔ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
23 |
22
|
biimpi |
⊢ ( 𝐾 ∈ 𝐽 → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
24 |
23
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
25 |
|
eqid |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 ) |
26 |
25 1 2 3
|
gpgvtxel2 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) → ( 2nd ‘ 𝑋 ) ∈ ( 0 ..^ 𝑁 ) ) |
27 |
26
|
adantrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( 2nd ‘ 𝑋 ) ∈ ( 0 ..^ 𝑁 ) ) |
28 |
|
gpg3nbgrvtxlem |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ∧ ( 2nd ‘ 𝑋 ) ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) ≠ ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) ) |
29 |
21 24 27 28
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) ≠ ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) ) |
30 |
29
|
necomd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) ≠ ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) ) |
31 |
30
|
olcd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( 1 ≠ 1 ∨ ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) ≠ ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) ) ) |
32 |
|
ovex |
⊢ ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) ∈ V |
33 |
10 32
|
opthne |
⊢ ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ≠ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ↔ ( 1 ≠ 1 ∨ ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) ≠ ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) ) ) |
34 |
31 33
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ≠ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ) |
35 |
13 20 34
|
3jca |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ≠ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∧ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ≠ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∧ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ≠ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ) ) |
36 |
|
opex |
⊢ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∈ V |
37 |
|
opex |
⊢ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∈ V |
38 |
|
opex |
⊢ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∈ V |
39 |
|
hashtpg |
⊢ ( ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∈ V ∧ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∈ V ∧ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∈ V ) → ( ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ≠ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∧ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ≠ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∧ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ≠ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ) ↔ ( ♯ ‘ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) = 3 ) ) |
40 |
36 37 38 39
|
mp3an |
⊢ ( ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ≠ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∧ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ≠ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∧ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ≠ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ) ↔ ( ♯ ‘ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) = 3 ) |
41 |
35 40
|
sylib |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ♯ ‘ { 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 , 〈 0 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 } ) = 3 ) |
42 |
6 41
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ♯ ‘ 𝑈 ) = 3 ) |