Metamath Proof Explorer


Theorem gpg3nbgrvtx1

Description: In a generalized Petersen graph G , every vertex of the second kind has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025)

Ref Expression
Hypotheses gpgnbgr.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
gpgnbgr.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
gpgnbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
gpgnbgr.u 𝑈 = ( 𝐺 NeighbVtx 𝑋 )
Assertion gpg3nbgrvtx1 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( ♯ ‘ 𝑈 ) = 3 )

Proof

Step Hyp Ref Expression
1 gpgnbgr.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
2 gpgnbgr.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
3 gpgnbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
4 gpgnbgr.u 𝑈 = ( 𝐺 NeighbVtx 𝑋 )
5 1 2 3 4 gpgnbgrvtx1 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → 𝑈 = { ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } )
6 5 fveq2d ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } ) )
7 ax-1ne0 1 ≠ 0
8 7 a1i ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → 1 ≠ 0 )
9 8 orcd ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( 1 ≠ 0 ∨ ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ≠ ( 2nd𝑋 ) ) )
10 1ex 1 ∈ V
11 ovex ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ∈ V
12 10 11 opthne ( ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ≠ ⟨ 0 , ( 2nd𝑋 ) ⟩ ↔ ( 1 ≠ 0 ∨ ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ≠ ( 2nd𝑋 ) ) )
13 9 12 sylibr ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ≠ ⟨ 0 , ( 2nd𝑋 ) ⟩ )
14 0ne1 0 ≠ 1
15 14 a1i ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → 0 ≠ 1 )
16 15 orcd ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( 0 ≠ 1 ∨ ( 2nd𝑋 ) ≠ ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ) )
17 c0ex 0 ∈ V
18 fvex ( 2nd𝑋 ) ∈ V
19 17 18 opthne ( ⟨ 0 , ( 2nd𝑋 ) ⟩ ≠ ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ↔ ( 0 ≠ 1 ∨ ( 2nd𝑋 ) ≠ ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ) )
20 16 19 sylibr ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ⟨ 0 , ( 2nd𝑋 ) ⟩ ≠ ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ )
21 simpll ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → 𝑁 ∈ ( ℤ ‘ 3 ) )
22 1 eleq2i ( 𝐾𝐽𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )
23 22 biimpi ( 𝐾𝐽𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )
24 23 ad2antlr ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )
25 eqid ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 )
26 25 1 2 3 gpgvtxel2 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑋𝑉 ) → ( 2nd𝑋 ) ∈ ( 0 ..^ 𝑁 ) )
27 26 adantrr ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( 2nd𝑋 ) ∈ ( 0 ..^ 𝑁 ) )
28 gpg3nbgrvtxlem ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ∧ ( 2nd𝑋 ) ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ≠ ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) )
29 21 24 27 28 syl3anc ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ≠ ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) )
30 29 necomd ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ≠ ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) )
31 30 olcd ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( 1 ≠ 1 ∨ ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ≠ ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ) )
32 ovex ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ∈ V
33 10 32 opthne ( ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ≠ ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ↔ ( 1 ≠ 1 ∨ ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ≠ ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ) )
34 31 33 sylibr ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ≠ ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ )
35 13 20 34 3jca ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ≠ ⟨ 0 , ( 2nd𝑋 ) ⟩ ∧ ⟨ 0 , ( 2nd𝑋 ) ⟩ ≠ ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ∧ ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ≠ ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ) )
36 opex ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∈ V
37 opex ⟨ 0 , ( 2nd𝑋 ) ⟩ ∈ V
38 opex ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ∈ V
39 hashtpg ( ( ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∈ V ∧ ⟨ 0 , ( 2nd𝑋 ) ⟩ ∈ V ∧ ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ∈ V ) → ( ( ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ≠ ⟨ 0 , ( 2nd𝑋 ) ⟩ ∧ ⟨ 0 , ( 2nd𝑋 ) ⟩ ≠ ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ∧ ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ≠ ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ) ↔ ( ♯ ‘ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } ) = 3 ) )
40 36 37 38 39 mp3an ( ( ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ≠ ⟨ 0 , ( 2nd𝑋 ) ⟩ ∧ ⟨ 0 , ( 2nd𝑋 ) ⟩ ≠ ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ∧ ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ≠ ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ) ↔ ( ♯ ‘ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } ) = 3 )
41 35 40 sylib ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( ♯ ‘ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } ) = 3 )
42 6 41 eqtrd ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( ♯ ‘ 𝑈 ) = 3 )