Step |
Hyp |
Ref |
Expression |
1 |
|
gpgnbgr.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
2 |
|
gpgnbgr.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
3 |
|
gpgnbgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
4 |
|
gpgnbgr.u |
⊢ 𝑈 = ( 𝐺 NeighbVtx 𝑋 ) |
5 |
|
eqid |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 ) |
6 |
5 1 2 3
|
gpgvtxel |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ 𝑉 ↔ ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑥 , 𝑦 〉 ) ) |
7 |
6
|
biimp3a |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑥 , 𝑦 〉 ) |
8 |
|
elpri |
⊢ ( 𝑥 ∈ { 0 , 1 } → ( 𝑥 = 0 ∨ 𝑥 = 1 ) ) |
9 |
|
opeq1 |
⊢ ( 𝑥 = 0 → 〈 𝑥 , 𝑦 〉 = 〈 0 , 𝑦 〉 ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑥 = 0 → ( 𝑋 = 〈 𝑥 , 𝑦 〉 ↔ 𝑋 = 〈 0 , 𝑦 〉 ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝑥 = 0 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 ↔ 𝑋 = 〈 0 , 𝑦 〉 ) ) |
12 |
|
c0ex |
⊢ 0 ∈ V |
13 |
|
vex |
⊢ 𝑦 ∈ V |
14 |
12 13
|
op1std |
⊢ ( 𝑋 = 〈 0 , 𝑦 〉 → ( 1st ‘ 𝑋 ) = 0 ) |
15 |
1 2 3 4
|
gpg3nbgrvtx0 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ♯ ‘ 𝑈 ) = 3 ) |
16 |
15
|
exp43 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝐾 ∈ 𝐽 → ( 𝑋 ∈ 𝑉 → ( ( 1st ‘ 𝑋 ) = 0 → ( ♯ ‘ 𝑈 ) = 3 ) ) ) ) |
17 |
16
|
3imp |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ( 1st ‘ 𝑋 ) = 0 → ( ♯ ‘ 𝑈 ) = 3 ) ) |
18 |
14 17
|
syl5 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 0 , 𝑦 〉 → ( ♯ ‘ 𝑈 ) = 3 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝑥 = 0 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 0 , 𝑦 〉 → ( ♯ ‘ 𝑈 ) = 3 ) ) |
20 |
11 19
|
sylbid |
⊢ ( ( 𝑥 = 0 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( ♯ ‘ 𝑈 ) = 3 ) ) |
21 |
20
|
ex |
⊢ ( 𝑥 = 0 → ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( ♯ ‘ 𝑈 ) = 3 ) ) ) |
22 |
|
opeq1 |
⊢ ( 𝑥 = 1 → 〈 𝑥 , 𝑦 〉 = 〈 1 , 𝑦 〉 ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑥 = 1 → ( 𝑋 = 〈 𝑥 , 𝑦 〉 ↔ 𝑋 = 〈 1 , 𝑦 〉 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝑥 = 1 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 ↔ 𝑋 = 〈 1 , 𝑦 〉 ) ) |
25 |
|
1ex |
⊢ 1 ∈ V |
26 |
25 13
|
op1std |
⊢ ( 𝑋 = 〈 1 , 𝑦 〉 → ( 1st ‘ 𝑋 ) = 1 ) |
27 |
1 2 3 4
|
gpg3nbgrvtx1 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 1 ) ) → ( ♯ ‘ 𝑈 ) = 3 ) |
28 |
27
|
exp43 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝐾 ∈ 𝐽 → ( 𝑋 ∈ 𝑉 → ( ( 1st ‘ 𝑋 ) = 1 → ( ♯ ‘ 𝑈 ) = 3 ) ) ) ) |
29 |
28
|
3imp |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ( 1st ‘ 𝑋 ) = 1 → ( ♯ ‘ 𝑈 ) = 3 ) ) |
30 |
26 29
|
syl5 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 1 , 𝑦 〉 → ( ♯ ‘ 𝑈 ) = 3 ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝑥 = 1 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 1 , 𝑦 〉 → ( ♯ ‘ 𝑈 ) = 3 ) ) |
32 |
24 31
|
sylbid |
⊢ ( ( 𝑥 = 1 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( ♯ ‘ 𝑈 ) = 3 ) ) |
33 |
32
|
ex |
⊢ ( 𝑥 = 1 → ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( ♯ ‘ 𝑈 ) = 3 ) ) ) |
34 |
21 33
|
jaoi |
⊢ ( ( 𝑥 = 0 ∨ 𝑥 = 1 ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( ♯ ‘ 𝑈 ) = 3 ) ) ) |
35 |
8 34
|
syl |
⊢ ( 𝑥 ∈ { 0 , 1 } → ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( ♯ ‘ 𝑈 ) = 3 ) ) ) |
36 |
35
|
impcom |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ { 0 , 1 } ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( ♯ ‘ 𝑈 ) = 3 ) ) |
37 |
36
|
a1d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ { 0 , 1 } ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( ♯ ‘ 𝑈 ) = 3 ) ) ) |
38 |
37
|
expimpd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( ♯ ‘ 𝑈 ) = 3 ) ) ) |
39 |
38
|
rexlimdvv |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) 𝑋 = 〈 𝑥 , 𝑦 〉 → ( ♯ ‘ 𝑈 ) = 3 ) ) |
40 |
7 39
|
mpd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ♯ ‘ 𝑈 ) = 3 ) |