Step |
Hyp |
Ref |
Expression |
1 |
|
gpgvtxdg3.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
2 |
|
gpgvtxdg3.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
3 |
|
gpgvtxdg3.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
4 |
1
|
eleq2i |
⊢ ( 𝐾 ∈ 𝐽 ↔ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
5 |
4
|
biimpi |
⊢ ( 𝐾 ∈ 𝐽 → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
6 |
5
|
anim2i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) ) |
8 |
|
gpgusgra |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph ) |
9 |
7 8
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph ) |
10 |
2 9
|
eqeltrid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → 𝐺 ∈ USGraph ) |
11 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
12 |
3
|
hashnbusgrvd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑋 ) ) |
13 |
12
|
eqcomd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑋 ) = ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) ) |
14 |
10 11 13
|
syl2anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑋 ) = ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) ) |
15 |
|
eqid |
⊢ ( 𝐺 NeighbVtx 𝑋 ) = ( 𝐺 NeighbVtx 𝑋 ) |
16 |
1 2 3 15
|
gpgcubic |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) = 3 ) |
17 |
14 16
|
eqtrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑋 ) = 3 ) |