Metamath Proof Explorer


Theorem gpgvtxdg3

Description: Every vertex in a generalized Petersen graph has degree 3. (Contributed by AV, 4-Sep-2025)

Ref Expression
Hypotheses gpgvtxdg3.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
gpgvtxdg3.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
gpgvtxdg3.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion gpgvtxdg3 ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽𝑋𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑋 ) = 3 )

Proof

Step Hyp Ref Expression
1 gpgvtxdg3.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
2 gpgvtxdg3.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
3 gpgvtxdg3.v 𝑉 = ( Vtx ‘ 𝐺 )
4 1 eleq2i ( 𝐾𝐽𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )
5 4 biimpi ( 𝐾𝐽𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )
6 5 anim2i ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) )
7 6 3adant3 ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽𝑋𝑉 ) → ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) )
8 gpgusgra ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph )
9 7 8 syl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽𝑋𝑉 ) → ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph )
10 2 9 eqeltrid ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽𝑋𝑉 ) → 𝐺 ∈ USGraph )
11 simp3 ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽𝑋𝑉 ) → 𝑋𝑉 )
12 3 hashnbusgrvd ( ( 𝐺 ∈ USGraph ∧ 𝑋𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑋 ) )
13 12 eqcomd ( ( 𝐺 ∈ USGraph ∧ 𝑋𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑋 ) = ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) )
14 10 11 13 syl2anc ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽𝑋𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑋 ) = ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) )
15 eqid ( 𝐺 NeighbVtx 𝑋 ) = ( 𝐺 NeighbVtx 𝑋 )
16 1 2 3 15 gpgcubic ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽𝑋𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) = 3 )
17 14 16 eqtrd ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽𝑋𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑋 ) = 3 )