Step |
Hyp |
Ref |
Expression |
1 |
|
gpgvtxdg3.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
2 |
|
gpgvtxdg3.g |
|- G = ( N gPetersenGr K ) |
3 |
|
gpgvtxdg3.v |
|- V = ( Vtx ` G ) |
4 |
1
|
eleq2i |
|- ( K e. J <-> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
5 |
4
|
biimpi |
|- ( K e. J -> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
6 |
5
|
anim2i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) ) |
7 |
6
|
3adant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) ) |
8 |
|
gpgusgra |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) |
9 |
7 8
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( N gPetersenGr K ) e. USGraph ) |
10 |
2 9
|
eqeltrid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> G e. USGraph ) |
11 |
|
simp3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> X e. V ) |
12 |
3
|
hashnbusgrvd |
|- ( ( G e. USGraph /\ X e. V ) -> ( # ` ( G NeighbVtx X ) ) = ( ( VtxDeg ` G ) ` X ) ) |
13 |
12
|
eqcomd |
|- ( ( G e. USGraph /\ X e. V ) -> ( ( VtxDeg ` G ) ` X ) = ( # ` ( G NeighbVtx X ) ) ) |
14 |
10 11 13
|
syl2anc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( ( VtxDeg ` G ) ` X ) = ( # ` ( G NeighbVtx X ) ) ) |
15 |
|
eqid |
|- ( G NeighbVtx X ) = ( G NeighbVtx X ) |
16 |
1 2 3 15
|
gpgcubic |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( # ` ( G NeighbVtx X ) ) = 3 ) |
17 |
14 16
|
eqtrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( ( VtxDeg ` G ) ` X ) = 3 ) |