Metamath Proof Explorer


Theorem gpgvtxdg3

Description: Every vertex in a generalized Petersen graph has degree 3. (Contributed by AV, 4-Sep-2025)

Ref Expression
Hypotheses gpgvtxdg3.j
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
gpgvtxdg3.g
|- G = ( N gPetersenGr K )
gpgvtxdg3.v
|- V = ( Vtx ` G )
Assertion gpgvtxdg3
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( ( VtxDeg ` G ) ` X ) = 3 )

Proof

Step Hyp Ref Expression
1 gpgvtxdg3.j
 |-  J = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
2 gpgvtxdg3.g
 |-  G = ( N gPetersenGr K )
3 gpgvtxdg3.v
 |-  V = ( Vtx ` G )
4 1 eleq2i
 |-  ( K e. J <-> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) )
5 4 biimpi
 |-  ( K e. J -> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) )
6 5 anim2i
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) )
7 6 3adant3
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) )
8 gpgusgra
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph )
9 7 8 syl
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( N gPetersenGr K ) e. USGraph )
10 2 9 eqeltrid
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> G e. USGraph )
11 simp3
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> X e. V )
12 3 hashnbusgrvd
 |-  ( ( G e. USGraph /\ X e. V ) -> ( # ` ( G NeighbVtx X ) ) = ( ( VtxDeg ` G ) ` X ) )
13 12 eqcomd
 |-  ( ( G e. USGraph /\ X e. V ) -> ( ( VtxDeg ` G ) ` X ) = ( # ` ( G NeighbVtx X ) ) )
14 10 11 13 syl2anc
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( ( VtxDeg ` G ) ` X ) = ( # ` ( G NeighbVtx X ) ) )
15 eqid
 |-  ( G NeighbVtx X ) = ( G NeighbVtx X )
16 1 2 3 15 gpgcubic
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( # ` ( G NeighbVtx X ) ) = 3 )
17 14 16 eqtrd
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( ( VtxDeg ` G ) ` X ) = 3 )