Metamath Proof Explorer


Theorem gpgvtxdg3

Description: Every vertex in a generalized Petersen graph has degree 3. (Contributed by AV, 4-Sep-2025)

Ref Expression
Hypotheses gpgvtxdg3.j J = 1 ..^ N 2
gpgvtxdg3.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpgvtxdg3.v V = Vtx G
Assertion gpgvtxdg3 N 3 K J X V VtxDeg G X = 3

Proof

Step Hyp Ref Expression
1 gpgvtxdg3.j J = 1 ..^ N 2
2 gpgvtxdg3.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
3 gpgvtxdg3.v V = Vtx G
4 1 eleq2i K J K 1 ..^ N 2
5 4 biimpi K J K 1 ..^ N 2
6 5 anim2i N 3 K J N 3 K 1 ..^ N 2
7 6 3adant3 N 3 K J X V N 3 K 1 ..^ N 2
8 gpgusgra Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) with typecode |-
9 7 8 syl Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( N gPetersenGr K ) e. USGraph ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( N gPetersenGr K ) e. USGraph ) with typecode |-
10 2 9 eqeltrid N 3 K J X V G USGraph
11 simp3 N 3 K J X V X V
12 3 hashnbusgrvd G USGraph X V G NeighbVtx X = VtxDeg G X
13 12 eqcomd G USGraph X V VtxDeg G X = G NeighbVtx X
14 10 11 13 syl2anc N 3 K J X V VtxDeg G X = G NeighbVtx X
15 eqid G NeighbVtx X = G NeighbVtx X
16 1 2 3 15 gpgcubic N 3 K J X V G NeighbVtx X = 3
17 14 16 eqtrd N 3 K J X V VtxDeg G X = 3