Step |
Hyp |
Ref |
Expression |
1 |
|
gpgnbgr.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
2 |
|
gpgnbgr.g |
|- G = ( N gPetersenGr K ) |
3 |
|
gpgnbgr.v |
|- V = ( Vtx ` G ) |
4 |
|
gpgnbgr.u |
|- U = ( G NeighbVtx X ) |
5 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
6 |
5 1 2 3
|
gpgvtxel |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. V <-> E. x e. { 0 , 1 } E. y e. ( 0 ..^ N ) X = <. x , y >. ) ) |
7 |
6
|
biimp3a |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> E. x e. { 0 , 1 } E. y e. ( 0 ..^ N ) X = <. x , y >. ) |
8 |
|
elpri |
|- ( x e. { 0 , 1 } -> ( x = 0 \/ x = 1 ) ) |
9 |
|
opeq1 |
|- ( x = 0 -> <. x , y >. = <. 0 , y >. ) |
10 |
9
|
eqeq2d |
|- ( x = 0 -> ( X = <. x , y >. <-> X = <. 0 , y >. ) ) |
11 |
10
|
adantr |
|- ( ( x = 0 /\ ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) ) -> ( X = <. x , y >. <-> X = <. 0 , y >. ) ) |
12 |
|
c0ex |
|- 0 e. _V |
13 |
|
vex |
|- y e. _V |
14 |
12 13
|
op1std |
|- ( X = <. 0 , y >. -> ( 1st ` X ) = 0 ) |
15 |
1 2 3 4
|
gpg3nbgrvtx0 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( # ` U ) = 3 ) |
16 |
15
|
exp43 |
|- ( N e. ( ZZ>= ` 3 ) -> ( K e. J -> ( X e. V -> ( ( 1st ` X ) = 0 -> ( # ` U ) = 3 ) ) ) ) |
17 |
16
|
3imp |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( ( 1st ` X ) = 0 -> ( # ` U ) = 3 ) ) |
18 |
14 17
|
syl5 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( X = <. 0 , y >. -> ( # ` U ) = 3 ) ) |
19 |
18
|
adantl |
|- ( ( x = 0 /\ ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) ) -> ( X = <. 0 , y >. -> ( # ` U ) = 3 ) ) |
20 |
11 19
|
sylbid |
|- ( ( x = 0 /\ ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) ) -> ( X = <. x , y >. -> ( # ` U ) = 3 ) ) |
21 |
20
|
ex |
|- ( x = 0 -> ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( X = <. x , y >. -> ( # ` U ) = 3 ) ) ) |
22 |
|
opeq1 |
|- ( x = 1 -> <. x , y >. = <. 1 , y >. ) |
23 |
22
|
eqeq2d |
|- ( x = 1 -> ( X = <. x , y >. <-> X = <. 1 , y >. ) ) |
24 |
23
|
adantr |
|- ( ( x = 1 /\ ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) ) -> ( X = <. x , y >. <-> X = <. 1 , y >. ) ) |
25 |
|
1ex |
|- 1 e. _V |
26 |
25 13
|
op1std |
|- ( X = <. 1 , y >. -> ( 1st ` X ) = 1 ) |
27 |
1 2 3 4
|
gpg3nbgrvtx1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( # ` U ) = 3 ) |
28 |
27
|
exp43 |
|- ( N e. ( ZZ>= ` 3 ) -> ( K e. J -> ( X e. V -> ( ( 1st ` X ) = 1 -> ( # ` U ) = 3 ) ) ) ) |
29 |
28
|
3imp |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( ( 1st ` X ) = 1 -> ( # ` U ) = 3 ) ) |
30 |
26 29
|
syl5 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( X = <. 1 , y >. -> ( # ` U ) = 3 ) ) |
31 |
30
|
adantl |
|- ( ( x = 1 /\ ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) ) -> ( X = <. 1 , y >. -> ( # ` U ) = 3 ) ) |
32 |
24 31
|
sylbid |
|- ( ( x = 1 /\ ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) ) -> ( X = <. x , y >. -> ( # ` U ) = 3 ) ) |
33 |
32
|
ex |
|- ( x = 1 -> ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( X = <. x , y >. -> ( # ` U ) = 3 ) ) ) |
34 |
21 33
|
jaoi |
|- ( ( x = 0 \/ x = 1 ) -> ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( X = <. x , y >. -> ( # ` U ) = 3 ) ) ) |
35 |
8 34
|
syl |
|- ( x e. { 0 , 1 } -> ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( X = <. x , y >. -> ( # ` U ) = 3 ) ) ) |
36 |
35
|
impcom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) /\ x e. { 0 , 1 } ) -> ( X = <. x , y >. -> ( # ` U ) = 3 ) ) |
37 |
36
|
a1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) /\ x e. { 0 , 1 } ) -> ( y e. ( 0 ..^ N ) -> ( X = <. x , y >. -> ( # ` U ) = 3 ) ) ) |
38 |
37
|
expimpd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) -> ( X = <. x , y >. -> ( # ` U ) = 3 ) ) ) |
39 |
38
|
rexlimdvv |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( E. x e. { 0 , 1 } E. y e. ( 0 ..^ N ) X = <. x , y >. -> ( # ` U ) = 3 ) ) |
40 |
7 39
|
mpd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. V ) -> ( # ` U ) = 3 ) |