Step |
Hyp |
Ref |
Expression |
1 |
|
gpgnbgr.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
2 |
|
gpgnbgr.g |
|- G = ( N gPetersenGr K ) |
3 |
|
gpgnbgr.v |
|- V = ( Vtx ` G ) |
4 |
|
gpgnbgr.u |
|- U = ( G NeighbVtx X ) |
5 |
1 2 3 4
|
gpgnbgrvtx0 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> U = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |
6 |
5
|
fveq2d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( # ` U ) = ( # ` { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) ) |
7 |
|
0ne1 |
|- 0 =/= 1 |
8 |
7
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> 0 =/= 1 ) |
9 |
8
|
orcd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 0 =/= 1 \/ ( ( ( 2nd ` X ) + 1 ) mod N ) =/= ( 2nd ` X ) ) ) |
10 |
|
c0ex |
|- 0 e. _V |
11 |
|
ovex |
|- ( ( ( 2nd ` X ) + 1 ) mod N ) e. _V |
12 |
10 11
|
opthne |
|- ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. =/= <. 1 , ( 2nd ` X ) >. <-> ( 0 =/= 1 \/ ( ( ( 2nd ` X ) + 1 ) mod N ) =/= ( 2nd ` X ) ) ) |
13 |
9 12
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. =/= <. 1 , ( 2nd ` X ) >. ) |
14 |
|
ax-1ne0 |
|- 1 =/= 0 |
15 |
14
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> 1 =/= 0 ) |
16 |
15
|
orcd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 1 =/= 0 \/ ( 2nd ` X ) =/= ( ( ( 2nd ` X ) - 1 ) mod N ) ) ) |
17 |
|
1ex |
|- 1 e. _V |
18 |
|
fvex |
|- ( 2nd ` X ) e. _V |
19 |
17 18
|
opthne |
|- ( <. 1 , ( 2nd ` X ) >. =/= <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. <-> ( 1 =/= 0 \/ ( 2nd ` X ) =/= ( ( ( 2nd ` X ) - 1 ) mod N ) ) ) |
20 |
16 19
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> <. 1 , ( 2nd ` X ) >. =/= <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) |
21 |
|
simpl |
|- ( ( X e. V /\ ( 1st ` X ) = 0 ) -> X e. V ) |
22 |
21
|
anim2i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) ) |
23 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
24 |
23 1 2 3
|
gpgvtxel2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> ( 2nd ` X ) e. ( 0 ..^ N ) ) |
25 |
|
elfzoelz |
|- ( ( 2nd ` X ) e. ( 0 ..^ N ) -> ( 2nd ` X ) e. ZZ ) |
26 |
22 24 25
|
3syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 2nd ` X ) e. ZZ ) |
27 |
26
|
zcnd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 2nd ` X ) e. CC ) |
28 |
|
1cnd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> 1 e. CC ) |
29 |
|
2cnd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> 2 e. CC ) |
30 |
27 28 29
|
subadd23d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( ( 2nd ` X ) - 1 ) + 2 ) = ( ( 2nd ` X ) + ( 2 - 1 ) ) ) |
31 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
32 |
31
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 2 - 1 ) = 1 ) |
33 |
32
|
oveq2d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( 2nd ` X ) + ( 2 - 1 ) ) = ( ( 2nd ` X ) + 1 ) ) |
34 |
30 33
|
eqtrd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( ( 2nd ` X ) - 1 ) + 2 ) = ( ( 2nd ` X ) + 1 ) ) |
35 |
34
|
eqcomd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( 2nd ` X ) + 1 ) = ( ( ( 2nd ` X ) - 1 ) + 2 ) ) |
36 |
35
|
oveq1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( ( 2nd ` X ) + 1 ) mod N ) = ( ( ( ( 2nd ` X ) - 1 ) + 2 ) mod N ) ) |
37 |
|
1zzd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> 1 e. ZZ ) |
38 |
26 37
|
zsubcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( 2nd ` X ) - 1 ) e. ZZ ) |
39 |
38
|
zred |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( 2nd ` X ) - 1 ) e. RR ) |
40 |
|
2re |
|- 2 e. RR |
41 |
40
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> 2 e. RR ) |
42 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
43 |
42
|
nnrpd |
|- ( N e. ( ZZ>= ` 3 ) -> N e. RR+ ) |
44 |
43
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> N e. RR+ ) |
45 |
|
modaddabs |
|- ( ( ( ( 2nd ` X ) - 1 ) e. RR /\ 2 e. RR /\ N e. RR+ ) -> ( ( ( ( ( 2nd ` X ) - 1 ) mod N ) + ( 2 mod N ) ) mod N ) = ( ( ( ( 2nd ` X ) - 1 ) + 2 ) mod N ) ) |
46 |
39 41 44 45
|
syl3anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( ( ( ( 2nd ` X ) - 1 ) mod N ) + ( 2 mod N ) ) mod N ) = ( ( ( ( 2nd ` X ) - 1 ) + 2 ) mod N ) ) |
47 |
46
|
eqcomd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( ( ( 2nd ` X ) - 1 ) + 2 ) mod N ) = ( ( ( ( ( 2nd ` X ) - 1 ) mod N ) + ( 2 mod N ) ) mod N ) ) |
48 |
36 47
|
eqtrd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( ( 2nd ` X ) + 1 ) mod N ) = ( ( ( ( ( 2nd ` X ) - 1 ) mod N ) + ( 2 mod N ) ) mod N ) ) |
49 |
42
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> N e. NN ) |
50 |
38 49
|
zmodcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( ( 2nd ` X ) - 1 ) mod N ) e. NN0 ) |
51 |
|
modlt |
|- ( ( ( ( 2nd ` X ) - 1 ) e. RR /\ N e. RR+ ) -> ( ( ( 2nd ` X ) - 1 ) mod N ) < N ) |
52 |
39 44 51
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( ( 2nd ` X ) - 1 ) mod N ) < N ) |
53 |
50 52
|
jca |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( ( ( 2nd ` X ) - 1 ) mod N ) e. NN0 /\ ( ( ( 2nd ` X ) - 1 ) mod N ) < N ) ) |
54 |
|
2nn0 |
|- 2 e. NN0 |
55 |
54
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> 2 e. NN0 ) |
56 |
|
eluz2 |
|- ( N e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ N e. ZZ /\ 3 <_ N ) ) |
57 |
40
|
a1i |
|- ( ( N e. ZZ /\ 3 <_ N ) -> 2 e. RR ) |
58 |
|
3re |
|- 3 e. RR |
59 |
58
|
a1i |
|- ( ( N e. ZZ /\ 3 <_ N ) -> 3 e. RR ) |
60 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
61 |
60
|
adantr |
|- ( ( N e. ZZ /\ 3 <_ N ) -> N e. RR ) |
62 |
|
2lt3 |
|- 2 < 3 |
63 |
62
|
a1i |
|- ( ( N e. ZZ /\ 3 <_ N ) -> 2 < 3 ) |
64 |
|
simpr |
|- ( ( N e. ZZ /\ 3 <_ N ) -> 3 <_ N ) |
65 |
57 59 61 63 64
|
ltletrd |
|- ( ( N e. ZZ /\ 3 <_ N ) -> 2 < N ) |
66 |
65
|
3adant1 |
|- ( ( 3 e. ZZ /\ N e. ZZ /\ 3 <_ N ) -> 2 < N ) |
67 |
56 66
|
sylbi |
|- ( N e. ( ZZ>= ` 3 ) -> 2 < N ) |
68 |
|
elfzo0 |
|- ( 2 e. ( 0 ..^ N ) <-> ( 2 e. NN0 /\ N e. NN /\ 2 < N ) ) |
69 |
55 42 67 68
|
syl3anbrc |
|- ( N e. ( ZZ>= ` 3 ) -> 2 e. ( 0 ..^ N ) ) |
70 |
|
zmodidfzoimp |
|- ( 2 e. ( 0 ..^ N ) -> ( 2 mod N ) = 2 ) |
71 |
69 70
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> ( 2 mod N ) = 2 ) |
72 |
|
2nn |
|- 2 e. NN |
73 |
71 72
|
eqeltrdi |
|- ( N e. ( ZZ>= ` 3 ) -> ( 2 mod N ) e. NN ) |
74 |
40
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> 2 e. RR ) |
75 |
|
modlt |
|- ( ( 2 e. RR /\ N e. RR+ ) -> ( 2 mod N ) < N ) |
76 |
74 43 75
|
syl2anc |
|- ( N e. ( ZZ>= ` 3 ) -> ( 2 mod N ) < N ) |
77 |
73 76
|
jca |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( 2 mod N ) e. NN /\ ( 2 mod N ) < N ) ) |
78 |
77
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( 2 mod N ) e. NN /\ ( 2 mod N ) < N ) ) |
79 |
|
addmodne |
|- ( ( N e. NN /\ ( ( ( ( 2nd ` X ) - 1 ) mod N ) e. NN0 /\ ( ( ( 2nd ` X ) - 1 ) mod N ) < N ) /\ ( ( 2 mod N ) e. NN /\ ( 2 mod N ) < N ) ) -> ( ( ( ( ( 2nd ` X ) - 1 ) mod N ) + ( 2 mod N ) ) mod N ) =/= ( ( ( 2nd ` X ) - 1 ) mod N ) ) |
80 |
49 53 78 79
|
syl3anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( ( ( ( 2nd ` X ) - 1 ) mod N ) + ( 2 mod N ) ) mod N ) =/= ( ( ( 2nd ` X ) - 1 ) mod N ) ) |
81 |
48 80
|
eqnetrd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( ( 2nd ` X ) + 1 ) mod N ) =/= ( ( ( 2nd ` X ) - 1 ) mod N ) ) |
82 |
81
|
necomd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( ( 2nd ` X ) - 1 ) mod N ) =/= ( ( ( 2nd ` X ) + 1 ) mod N ) ) |
83 |
82
|
olcd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 0 =/= 0 \/ ( ( ( 2nd ` X ) - 1 ) mod N ) =/= ( ( ( 2nd ` X ) + 1 ) mod N ) ) ) |
84 |
|
ovex |
|- ( ( ( 2nd ` X ) - 1 ) mod N ) e. _V |
85 |
10 84
|
opthne |
|- ( <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. <-> ( 0 =/= 0 \/ ( ( ( 2nd ` X ) - 1 ) mod N ) =/= ( ( ( 2nd ` X ) + 1 ) mod N ) ) ) |
86 |
83 85
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) |
87 |
13 20 86
|
3jca |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. =/= <. 1 , ( 2nd ` X ) >. /\ <. 1 , ( 2nd ` X ) >. =/= <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) ) |
88 |
|
opex |
|- <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. _V |
89 |
|
opex |
|- <. 1 , ( 2nd ` X ) >. e. _V |
90 |
|
opex |
|- <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. _V |
91 |
|
hashtpg |
|- ( ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. _V /\ <. 1 , ( 2nd ` X ) >. e. _V /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. _V ) -> ( ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. =/= <. 1 , ( 2nd ` X ) >. /\ <. 1 , ( 2nd ` X ) >. =/= <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) <-> ( # ` { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) = 3 ) ) |
92 |
88 89 90 91
|
mp3an |
|- ( ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. =/= <. 1 , ( 2nd ` X ) >. /\ <. 1 , ( 2nd ` X ) >. =/= <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) <-> ( # ` { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) = 3 ) |
93 |
87 92
|
sylib |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( # ` { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) = 3 ) |
94 |
6 93
|
eqtrd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( # ` U ) = 3 ) |