Step |
Hyp |
Ref |
Expression |
1 |
|
gpgnbgr.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
2 |
|
gpgnbgr.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
3 |
|
gpgnbgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
4 |
|
gpgnbgr.u |
⊢ 𝑈 = ( 𝐺 NeighbVtx 𝑋 ) |
5 |
1 2 3 4
|
gpgnbgrvtx0 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 𝑈 = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ) |
6 |
5
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ) ) |
7 |
|
0ne1 |
⊢ 0 ≠ 1 |
8 |
7
|
a1i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 0 ≠ 1 ) |
9 |
8
|
orcd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 0 ≠ 1 ∨ ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) ≠ ( 2nd ‘ 𝑋 ) ) ) |
10 |
|
c0ex |
⊢ 0 ∈ V |
11 |
|
ovex |
⊢ ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) ∈ V |
12 |
10 11
|
opthne |
⊢ ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ≠ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ↔ ( 0 ≠ 1 ∨ ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) ≠ ( 2nd ‘ 𝑋 ) ) ) |
13 |
9 12
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ≠ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ) |
14 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
15 |
14
|
a1i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 1 ≠ 0 ) |
16 |
15
|
orcd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 1 ≠ 0 ∨ ( 2nd ‘ 𝑋 ) ≠ ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) ) ) |
17 |
|
1ex |
⊢ 1 ∈ V |
18 |
|
fvex |
⊢ ( 2nd ‘ 𝑋 ) ∈ V |
19 |
17 18
|
opthne |
⊢ ( 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ≠ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ↔ ( 1 ≠ 0 ∨ ( 2nd ‘ 𝑋 ) ≠ ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) ) ) |
20 |
16 19
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ≠ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) |
21 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) → 𝑋 ∈ 𝑉 ) |
22 |
21
|
anim2i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) ) |
23 |
|
eqid |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 ) |
24 |
23 1 2 3
|
gpgvtxel2 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) → ( 2nd ‘ 𝑋 ) ∈ ( 0 ..^ 𝑁 ) ) |
25 |
|
elfzoelz |
⊢ ( ( 2nd ‘ 𝑋 ) ∈ ( 0 ..^ 𝑁 ) → ( 2nd ‘ 𝑋 ) ∈ ℤ ) |
26 |
22 24 25
|
3syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 2nd ‘ 𝑋 ) ∈ ℤ ) |
27 |
26
|
zcnd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 2nd ‘ 𝑋 ) ∈ ℂ ) |
28 |
|
1cnd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 1 ∈ ℂ ) |
29 |
|
2cnd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 2 ∈ ℂ ) |
30 |
27 28 29
|
subadd23d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ( 2nd ‘ 𝑋 ) − 1 ) + 2 ) = ( ( 2nd ‘ 𝑋 ) + ( 2 − 1 ) ) ) |
31 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
32 |
31
|
a1i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 2 − 1 ) = 1 ) |
33 |
32
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( 2nd ‘ 𝑋 ) + ( 2 − 1 ) ) = ( ( 2nd ‘ 𝑋 ) + 1 ) ) |
34 |
30 33
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ( 2nd ‘ 𝑋 ) − 1 ) + 2 ) = ( ( 2nd ‘ 𝑋 ) + 1 ) ) |
35 |
34
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( 2nd ‘ 𝑋 ) + 1 ) = ( ( ( 2nd ‘ 𝑋 ) − 1 ) + 2 ) ) |
36 |
35
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) = ( ( ( ( 2nd ‘ 𝑋 ) − 1 ) + 2 ) mod 𝑁 ) ) |
37 |
|
1zzd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 1 ∈ ℤ ) |
38 |
26 37
|
zsubcld |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( 2nd ‘ 𝑋 ) − 1 ) ∈ ℤ ) |
39 |
38
|
zred |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( 2nd ‘ 𝑋 ) − 1 ) ∈ ℝ ) |
40 |
|
2re |
⊢ 2 ∈ ℝ |
41 |
40
|
a1i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 2 ∈ ℝ ) |
42 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
43 |
42
|
nnrpd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℝ+ ) |
44 |
43
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 𝑁 ∈ ℝ+ ) |
45 |
|
modaddabs |
⊢ ( ( ( ( 2nd ‘ 𝑋 ) − 1 ) ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) + ( 2 mod 𝑁 ) ) mod 𝑁 ) = ( ( ( ( 2nd ‘ 𝑋 ) − 1 ) + 2 ) mod 𝑁 ) ) |
46 |
39 41 44 45
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) + ( 2 mod 𝑁 ) ) mod 𝑁 ) = ( ( ( ( 2nd ‘ 𝑋 ) − 1 ) + 2 ) mod 𝑁 ) ) |
47 |
46
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ( ( 2nd ‘ 𝑋 ) − 1 ) + 2 ) mod 𝑁 ) = ( ( ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) + ( 2 mod 𝑁 ) ) mod 𝑁 ) ) |
48 |
36 47
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) = ( ( ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) + ( 2 mod 𝑁 ) ) mod 𝑁 ) ) |
49 |
42
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 𝑁 ∈ ℕ ) |
50 |
38 49
|
zmodcld |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) ∈ ℕ0 ) |
51 |
|
modlt |
⊢ ( ( ( ( 2nd ‘ 𝑋 ) − 1 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) < 𝑁 ) |
52 |
39 44 51
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) < 𝑁 ) |
53 |
50 52
|
jca |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) ∈ ℕ0 ∧ ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) < 𝑁 ) ) |
54 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
55 |
54
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 ∈ ℕ0 ) |
56 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) ) |
57 |
40
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 2 ∈ ℝ ) |
58 |
|
3re |
⊢ 3 ∈ ℝ |
59 |
58
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 3 ∈ ℝ ) |
60 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
61 |
60
|
adantr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 𝑁 ∈ ℝ ) |
62 |
|
2lt3 |
⊢ 2 < 3 |
63 |
62
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 2 < 3 ) |
64 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 3 ≤ 𝑁 ) |
65 |
57 59 61 63 64
|
ltletrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 2 < 𝑁 ) |
66 |
65
|
3adant1 |
⊢ ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 2 < 𝑁 ) |
67 |
56 66
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 < 𝑁 ) |
68 |
|
elfzo0 |
⊢ ( 2 ∈ ( 0 ..^ 𝑁 ) ↔ ( 2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁 ) ) |
69 |
55 42 67 68
|
syl3anbrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 ∈ ( 0 ..^ 𝑁 ) ) |
70 |
|
zmodidfzoimp |
⊢ ( 2 ∈ ( 0 ..^ 𝑁 ) → ( 2 mod 𝑁 ) = 2 ) |
71 |
69 70
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 2 mod 𝑁 ) = 2 ) |
72 |
|
2nn |
⊢ 2 ∈ ℕ |
73 |
71 72
|
eqeltrdi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 2 mod 𝑁 ) ∈ ℕ ) |
74 |
40
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 ∈ ℝ ) |
75 |
|
modlt |
⊢ ( ( 2 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( 2 mod 𝑁 ) < 𝑁 ) |
76 |
74 43 75
|
syl2anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 2 mod 𝑁 ) < 𝑁 ) |
77 |
73 76
|
jca |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( ( 2 mod 𝑁 ) ∈ ℕ ∧ ( 2 mod 𝑁 ) < 𝑁 ) ) |
78 |
77
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( 2 mod 𝑁 ) ∈ ℕ ∧ ( 2 mod 𝑁 ) < 𝑁 ) ) |
79 |
|
addmodne |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) ∈ ℕ0 ∧ ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) < 𝑁 ) ∧ ( ( 2 mod 𝑁 ) ∈ ℕ ∧ ( 2 mod 𝑁 ) < 𝑁 ) ) → ( ( ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) + ( 2 mod 𝑁 ) ) mod 𝑁 ) ≠ ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) ) |
80 |
49 53 78 79
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) + ( 2 mod 𝑁 ) ) mod 𝑁 ) ≠ ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) ) |
81 |
48 80
|
eqnetrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) ≠ ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) ) |
82 |
81
|
necomd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) ≠ ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) ) |
83 |
82
|
olcd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 0 ≠ 0 ∨ ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) ≠ ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) ) ) |
84 |
|
ovex |
⊢ ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) ∈ V |
85 |
10 84
|
opthne |
⊢ ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ≠ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ↔ ( 0 ≠ 0 ∨ ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) ≠ ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) ) ) |
86 |
83 85
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ≠ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ) |
87 |
13 20 86
|
3jca |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ≠ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∧ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ≠ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∧ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ≠ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ) ) |
88 |
|
opex |
⊢ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ V |
89 |
|
opex |
⊢ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ V |
90 |
|
opex |
⊢ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ V |
91 |
|
hashtpg |
⊢ ( ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ V ∧ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ V ∧ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ V ) → ( ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ≠ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∧ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ≠ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∧ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ≠ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ) ↔ ( ♯ ‘ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ) = 3 ) ) |
92 |
88 89 90 91
|
mp3an |
⊢ ( ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ≠ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∧ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ≠ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∧ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ≠ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ) ↔ ( ♯ ‘ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ) = 3 ) |
93 |
87 92
|
sylib |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ♯ ‘ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ) = 3 ) |
94 |
6 93
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ♯ ‘ 𝑈 ) = 3 ) |