| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgnbgr.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 2 |
|
gpgnbgr.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
| 3 |
|
gpgnbgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 4 |
|
gpgnbgr.u |
⊢ 𝑈 = ( 𝐺 NeighbVtx 𝑋 ) |
| 5 |
4
|
a1i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 𝑈 = ( 𝐺 NeighbVtx 𝑋 ) ) |
| 6 |
1
|
eleq2i |
⊢ ( 𝐾 ∈ 𝐽 ↔ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 7 |
|
gpgusgra |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph ) |
| 8 |
6 7
|
sylan2b |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph ) |
| 9 |
2 8
|
eqeltrid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → 𝐺 ∈ USGraph ) |
| 10 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) → 𝑋 ∈ 𝑉 ) |
| 11 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 12 |
3 11
|
nbusgrvtx |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑋 ) = { 𝑦 ∈ 𝑉 ∣ { 𝑋 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) } ) |
| 13 |
9 10 12
|
syl2an |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 𝐺 NeighbVtx 𝑋 ) = { 𝑦 ∈ 𝑉 ∣ { 𝑋 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) } ) |
| 14 |
|
simpl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ) |
| 15 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) → ( 1st ‘ 𝑋 ) = 0 ) |
| 16 |
15
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 1st ‘ 𝑋 ) = 0 ) |
| 17 |
|
simpr |
⊢ ( ( 𝑣 ∈ 𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) |
| 18 |
1 2 3 11
|
gpgvtxedg0 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 0 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∨ 𝑣 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) ) |
| 19 |
14 16 17 18
|
syl2an3an |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∨ 𝑣 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) ) |
| 20 |
19
|
ex |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( 𝑣 ∈ 𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∨ 𝑣 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) ) ) |
| 21 |
1 2 3
|
gpgvtx0 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) → ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |
| 22 |
21
|
simp1d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) → 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) |
| 23 |
22
|
adantrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) |
| 24 |
1 2 3 11
|
gpgedgvtx0 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( { 𝑋 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑋 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑋 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 25 |
24
|
simp1d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → { 𝑋 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ) |
| 26 |
23 25
|
jca |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ { 𝑋 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 27 |
|
eleq1 |
⊢ ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 → ( 𝑣 ∈ 𝑉 ↔ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |
| 28 |
|
preq2 |
⊢ ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 → { 𝑋 , 𝑣 } = { 𝑋 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ) |
| 29 |
28
|
eleq1d |
⊢ ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 → ( { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑋 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 30 |
27 29
|
anbi12d |
⊢ ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 → ( ( 𝑣 ∈ 𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ { 𝑋 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 31 |
26 30
|
syl5ibrcom |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 → ( 𝑣 ∈ 𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 32 |
1 2 3
|
gpgvtx1 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) → ( 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ∧ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |
| 33 |
32
|
simp2d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) → 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ) |
| 34 |
33
|
adantrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ) |
| 35 |
24
|
simp2d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → { 𝑋 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ) |
| 36 |
34 35
|
jca |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ { 𝑋 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 37 |
|
eleq1 |
⊢ ( 𝑣 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 → ( 𝑣 ∈ 𝑉 ↔ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ) ) |
| 38 |
|
preq2 |
⊢ ( 𝑣 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 → { 𝑋 , 𝑣 } = { 𝑋 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ) |
| 39 |
38
|
eleq1d |
⊢ ( 𝑣 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 → ( { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑋 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 40 |
37 39
|
anbi12d |
⊢ ( 𝑣 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 → ( ( 𝑣 ∈ 𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ 𝑉 ∧ { 𝑋 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 41 |
36 40
|
syl5ibrcom |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 𝑣 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 → ( 𝑣 ∈ 𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 42 |
21
|
simp3d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) → 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) |
| 43 |
42
|
adantrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) |
| 44 |
43
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) ∧ 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) → 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) |
| 45 |
|
eleq1 |
⊢ ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 → ( 𝑣 ∈ 𝑉 ↔ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |
| 46 |
45
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) ∧ 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) → ( 𝑣 ∈ 𝑉 ↔ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ 𝑉 ) ) |
| 47 |
44 46
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) ∧ 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) → 𝑣 ∈ 𝑉 ) |
| 48 |
24
|
simp3d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → { 𝑋 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ) |
| 49 |
48
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) ∧ 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) → { 𝑋 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ) |
| 50 |
|
preq2 |
⊢ ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 → { 𝑋 , 𝑣 } = { 𝑋 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ) |
| 51 |
50
|
eleq1d |
⊢ ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 → ( { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑋 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 52 |
51
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) ∧ 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) → ( { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑋 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 53 |
49 52
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) ∧ 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) → { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) |
| 54 |
47 53
|
jca |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) ∧ 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) → ( 𝑣 ∈ 𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 55 |
54
|
ex |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 → ( 𝑣 ∈ 𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 56 |
31 41 55
|
3jaod |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∨ 𝑣 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) → ( 𝑣 ∈ 𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 57 |
20 56
|
impbid |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( 𝑣 ∈ 𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∨ 𝑣 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) ) ) |
| 58 |
|
preq2 |
⊢ ( 𝑦 = 𝑣 → { 𝑋 , 𝑦 } = { 𝑋 , 𝑣 } ) |
| 59 |
58
|
eleq1d |
⊢ ( 𝑦 = 𝑣 → ( { 𝑋 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 60 |
59
|
elrab |
⊢ ( 𝑣 ∈ { 𝑦 ∈ 𝑉 ∣ { 𝑋 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) } ↔ ( 𝑣 ∈ 𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 61 |
|
vex |
⊢ 𝑣 ∈ V |
| 62 |
61
|
eltp |
⊢ ( 𝑣 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ↔ ( 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∨ 𝑣 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑣 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) ) |
| 63 |
57 60 62
|
3bitr4g |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 𝑣 ∈ { 𝑦 ∈ 𝑉 ∣ { 𝑋 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) } ↔ 𝑣 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ) ) |
| 64 |
63
|
eqrdv |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → { 𝑦 ∈ 𝑉 ∣ { 𝑋 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ) |
| 65 |
5 13 64
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 𝑈 = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ) |