Metamath Proof Explorer


Theorem gpgnbgrvtx1

Description: The (open) neighborhood of a vertex of the second kind in a generalized Petersen graph G . (Contributed by AV, 2-Sep-2025)

Ref Expression
Hypotheses gpgnbgr.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
gpgnbgr.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
gpgnbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
gpgnbgr.u 𝑈 = ( 𝐺 NeighbVtx 𝑋 )
Assertion gpgnbgrvtx1 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → 𝑈 = { ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } )

Proof

Step Hyp Ref Expression
1 gpgnbgr.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
2 gpgnbgr.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
3 gpgnbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
4 gpgnbgr.u 𝑈 = ( 𝐺 NeighbVtx 𝑋 )
5 4 a1i ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → 𝑈 = ( 𝐺 NeighbVtx 𝑋 ) )
6 1 eleq2i ( 𝐾𝐽𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )
7 gpgusgra ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph )
8 6 7 sylan2b ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph )
9 2 8 eqeltrid ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → 𝐺 ∈ USGraph )
10 simpl ( ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) → 𝑋𝑉 )
11 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
12 3 11 nbusgrvtx ( ( 𝐺 ∈ USGraph ∧ 𝑋𝑉 ) → ( 𝐺 NeighbVtx 𝑋 ) = { 𝑦𝑉 ∣ { 𝑋 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) } )
13 9 10 12 syl2an ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( 𝐺 NeighbVtx 𝑋 ) = { 𝑦𝑉 ∣ { 𝑋 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) } )
14 simpl ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) )
15 simpr ( ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) → ( 1st𝑋 ) = 1 )
16 15 adantl ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( 1st𝑋 ) = 1 )
17 simpr ( ( 𝑣𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) )
18 1 2 3 11 gpgvtxedg1 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑣 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) )
19 14 16 17 18 syl2an3an ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) ∧ ( 𝑣𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑣 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) )
20 19 ex ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( ( 𝑣𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑣 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
21 1 2 3 gpgvtx1 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑋𝑉 ) → ( ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∈ 𝑉 ∧ ⟨ 1 , ( 2nd𝑋 ) ⟩ ∈ 𝑉 ∧ ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ∈ 𝑉 ) )
22 21 simp1d ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑋𝑉 ) → ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∈ 𝑉 )
23 22 adantrr ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∈ 𝑉 )
24 1 2 3 11 gpgedgvtx1 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( { 𝑋 , ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑋 , ⟨ 0 , ( 2nd𝑋 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑋 , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) ) )
25 24 simp1d ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → { 𝑋 , ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) )
26 23 25 jca ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∈ 𝑉 ∧ { 𝑋 , ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) ) )
27 eleq1 ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ → ( 𝑣𝑉 ↔ ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∈ 𝑉 ) )
28 preq2 ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ → { 𝑋 , 𝑣 } = { 𝑋 , ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ } )
29 28 eleq1d ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ → ( { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑋 , ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) ) )
30 27 29 anbi12d ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ → ( ( 𝑣𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∈ 𝑉 ∧ { 𝑋 , ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) ) ) )
31 26 30 syl5ibrcom ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ → ( 𝑣𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) )
32 1 2 3 gpgvtx0 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑋𝑉 ) → ( ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ ∈ 𝑉 ∧ ⟨ 0 , ( 2nd𝑋 ) ⟩ ∈ 𝑉 ∧ ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ ∈ 𝑉 ) )
33 32 simp2d ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑋𝑉 ) → ⟨ 0 , ( 2nd𝑋 ) ⟩ ∈ 𝑉 )
34 33 adantrr ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ⟨ 0 , ( 2nd𝑋 ) ⟩ ∈ 𝑉 )
35 24 simp2d ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → { 𝑋 , ⟨ 0 , ( 2nd𝑋 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) )
36 34 35 jca ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( ⟨ 0 , ( 2nd𝑋 ) ⟩ ∈ 𝑉 ∧ { 𝑋 , ⟨ 0 , ( 2nd𝑋 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) ) )
37 eleq1 ( 𝑣 = ⟨ 0 , ( 2nd𝑋 ) ⟩ → ( 𝑣𝑉 ↔ ⟨ 0 , ( 2nd𝑋 ) ⟩ ∈ 𝑉 ) )
38 preq2 ( 𝑣 = ⟨ 0 , ( 2nd𝑋 ) ⟩ → { 𝑋 , 𝑣 } = { 𝑋 , ⟨ 0 , ( 2nd𝑋 ) ⟩ } )
39 38 eleq1d ( 𝑣 = ⟨ 0 , ( 2nd𝑋 ) ⟩ → ( { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑋 , ⟨ 0 , ( 2nd𝑋 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) ) )
40 37 39 anbi12d ( 𝑣 = ⟨ 0 , ( 2nd𝑋 ) ⟩ → ( ( 𝑣𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ⟨ 0 , ( 2nd𝑋 ) ⟩ ∈ 𝑉 ∧ { 𝑋 , ⟨ 0 , ( 2nd𝑋 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) ) ) )
41 36 40 syl5ibrcom ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( 𝑣 = ⟨ 0 , ( 2nd𝑋 ) ⟩ → ( 𝑣𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) )
42 21 simp3d ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑋𝑉 ) → ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ∈ 𝑉 )
43 42 adantrr ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ∈ 𝑉 )
44 43 adantr ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) ∧ 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) → ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ∈ 𝑉 )
45 eleq1 ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ → ( 𝑣𝑉 ↔ ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ∈ 𝑉 ) )
46 45 adantl ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) ∧ 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) → ( 𝑣𝑉 ↔ ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ∈ 𝑉 ) )
47 44 46 mpbird ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) ∧ 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) → 𝑣𝑉 )
48 24 simp3d ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → { 𝑋 , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) )
49 48 adantr ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) ∧ 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) → { 𝑋 , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) )
50 preq2 ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ → { 𝑋 , 𝑣 } = { 𝑋 , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } )
51 50 eleq1d ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ → ( { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑋 , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) ) )
52 51 adantl ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) ∧ 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) → ( { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑋 , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } ∈ ( Edg ‘ 𝐺 ) ) )
53 49 52 mpbird ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) ∧ 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) → { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) )
54 47 53 jca ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) ∧ 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) → ( 𝑣𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) )
55 54 ex ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ → ( 𝑣𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) )
56 31 41 55 3jaod ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑣 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) → ( 𝑣𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) )
57 20 56 impbid ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( ( 𝑣𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑣 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
58 preq2 ( 𝑦 = 𝑣 → { 𝑋 , 𝑦 } = { 𝑋 , 𝑣 } )
59 58 eleq1d ( 𝑦 = 𝑣 → ( { 𝑋 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) )
60 59 elrab ( 𝑣 ∈ { 𝑦𝑉 ∣ { 𝑋 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) } ↔ ( 𝑣𝑉 ∧ { 𝑋 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) )
61 vex 𝑣 ∈ V
62 61 eltp ( 𝑣 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } ↔ ( 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑣 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑣 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) )
63 57 60 62 3bitr4g ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → ( 𝑣 ∈ { 𝑦𝑉 ∣ { 𝑋 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) } ↔ 𝑣 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } ) )
64 63 eqrdv ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → { 𝑦𝑉 ∣ { 𝑋 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) } = { ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } )
65 5 13 64 3eqtrd ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 1 ) ) → 𝑈 = { ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ } )