Metamath Proof Explorer


Theorem gpgvtxedg1

Description: The edges starting at a vertex X of the second kind in a generalized Petersen graph G . (Contributed by AV, 2-Sep-2025)

Ref Expression
Hypotheses gpgedgvtx0.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
gpgedgvtx0.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
gpgedgvtx0.v 𝑉 = ( Vtx ‘ 𝐺 )
gpgedgvtx0.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion gpgvtxedg1 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ { 𝑋 , 𝑌 } ∈ 𝐸 ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) )

Proof

Step Hyp Ref Expression
1 gpgedgvtx0.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
2 gpgedgvtx0.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
3 gpgedgvtx0.v 𝑉 = ( Vtx ‘ 𝐺 )
4 gpgedgvtx0.e 𝐸 = ( Edg ‘ 𝐺 )
5 gpgusgra ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph )
6 1 eleq2i ( 𝐾𝐽𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )
7 6 anbi2i ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ↔ ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) )
8 2 eleq1i ( 𝐺 ∈ USGraph ↔ ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph )
9 5 7 8 3imtr4i ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → 𝐺 ∈ USGraph )
10 9 3ad2ant1 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ { 𝑋 , 𝑌 } ∈ 𝐸 ) → 𝐺 ∈ USGraph )
11 simp3 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ { 𝑋 , 𝑌 } ∈ 𝐸 ) → { 𝑋 , 𝑌 } ∈ 𝐸 )
12 4 3 usgrpredgv ( ( 𝐺 ∈ USGraph ∧ { 𝑋 , 𝑌 } ∈ 𝐸 ) → ( 𝑋𝑉𝑌𝑉 ) )
13 10 11 12 syl2anc ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ { 𝑋 , 𝑌 } ∈ 𝐸 ) → ( 𝑋𝑉𝑌𝑉 ) )
14 eqid ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 )
15 14 1 2 4 gpgedgel ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( { 𝑋 , 𝑌 } ∈ 𝐸 ↔ ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( { 𝑋 , 𝑌 } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∨ { 𝑋 , 𝑌 } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∨ { 𝑋 , 𝑌 } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
16 15 3ad2ant1 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( { 𝑋 , 𝑌 } ∈ 𝐸 ↔ ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( { 𝑋 , 𝑌 } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∨ { 𝑋 , 𝑌 } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∨ { 𝑋 , 𝑌 } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
17 simp3 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( 𝑋𝑉𝑌𝑉 ) )
18 17 adantr ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑋𝑉𝑌𝑉 ) )
19 opex ⟨ 0 , 𝑦 ⟩ ∈ V
20 opex ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ∈ V
21 19 20 pm3.2i ( ⟨ 0 , 𝑦 ⟩ ∈ V ∧ ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ∈ V )
22 preq12bg ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ ( ⟨ 0 , 𝑦 ⟩ ∈ V ∧ ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ∈ V ) ) → ( { 𝑋 , 𝑌 } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ↔ ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ) ∨ ( 𝑋 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) ) ) )
23 18 21 22 sylancl ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { 𝑋 , 𝑌 } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ↔ ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ) ∨ ( 𝑋 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) ) ) )
24 c0ex 0 ∈ V
25 vex 𝑦 ∈ V
26 24 25 op1std ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( 1st𝑋 ) = 0 )
27 26 eqeq1d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( 1st𝑋 ) = 1 ↔ 0 = 1 ) )
28 eqcom ( 0 = 1 ↔ 1 = 0 )
29 27 28 bitrdi ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( 1st𝑋 ) = 1 ↔ 1 = 0 ) )
30 ax-1ne0 1 ≠ 0
31 eqneqall ( 1 = 0 → ( 1 ≠ 0 → ( 𝑌 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
32 31 com12 ( 1 ≠ 0 → ( 1 = 0 → ( 𝑌 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
33 30 32 mp1i ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( 1 = 0 → ( 𝑌 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
34 29 33 sylbid ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( 1st𝑋 ) = 1 → ( 𝑌 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
35 34 com12 ( ( 1st𝑋 ) = 1 → ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( 𝑌 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
36 35 impd ( ( 1st𝑋 ) = 1 → ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
37 ovex ( ( 𝑦 + 1 ) mod 𝑁 ) ∈ V
38 24 37 op1std ( 𝑋 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ → ( 1st𝑋 ) = 0 )
39 38 eqeq1d ( 𝑋 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ → ( ( 1st𝑋 ) = 1 ↔ 0 = 1 ) )
40 39 28 bitrdi ( 𝑋 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ → ( ( 1st𝑋 ) = 1 ↔ 1 = 0 ) )
41 eqneqall ( 1 = 0 → ( 1 ≠ 0 → ( 𝑌 = ⟨ 0 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
42 41 com12 ( 1 ≠ 0 → ( 1 = 0 → ( 𝑌 = ⟨ 0 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
43 30 42 mp1i ( 𝑋 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ → ( 1 = 0 → ( 𝑌 = ⟨ 0 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
44 40 43 sylbid ( 𝑋 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ → ( ( 1st𝑋 ) = 1 → ( 𝑌 = ⟨ 0 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
45 44 com12 ( ( 1st𝑋 ) = 1 → ( 𝑋 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ → ( 𝑌 = ⟨ 0 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
46 45 impd ( ( 1st𝑋 ) = 1 → ( ( 𝑋 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
47 36 46 jaod ( ( 1st𝑋 ) = 1 → ( ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ) ∨ ( 𝑋 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
48 47 3ad2ant2 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ) ∨ ( 𝑋 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
49 48 adantr ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ) ∨ ( 𝑋 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
50 23 49 sylbid ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { 𝑋 , 𝑌 } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
51 opex ⟨ 1 , 𝑦 ⟩ ∈ V
52 19 51 pm3.2i ( ⟨ 0 , 𝑦 ⟩ ∈ V ∧ ⟨ 1 , 𝑦 ⟩ ∈ V )
53 preq12bg ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ ( ⟨ 0 , 𝑦 ⟩ ∈ V ∧ ⟨ 1 , 𝑦 ⟩ ∈ V ) ) → ( { 𝑋 , 𝑌 } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ↔ ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) ∨ ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) ) ) )
54 18 52 53 sylancl ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { 𝑋 , 𝑌 } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ↔ ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) ∨ ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) ) ) )
55 eqneqall ( 1 = 0 → ( 1 ≠ 0 → ( 𝑌 = ⟨ 1 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
56 55 com12 ( 1 ≠ 0 → ( 1 = 0 → ( 𝑌 = ⟨ 1 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
57 30 56 mp1i ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( 1 = 0 → ( 𝑌 = ⟨ 1 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
58 29 57 sylbid ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( 1st𝑋 ) = 1 → ( 𝑌 = ⟨ 1 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
59 58 com12 ( ( 1st𝑋 ) = 1 → ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
60 59 3ad2ant2 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
61 60 adantr ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , 𝑦 ⟩ → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) )
62 61 impd ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
63 simpr ( ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) → 𝑌 = ⟨ 0 , 𝑦 ⟩ )
64 1ex 1 ∈ V
65 64 25 op2ndd ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( 2nd𝑋 ) = 𝑦 )
66 65 eqcomd ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → 𝑦 = ( 2nd𝑋 ) )
67 66 adantr ( ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) → 𝑦 = ( 2nd𝑋 ) )
68 67 opeq2d ( ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , ( 2nd𝑋 ) ⟩ )
69 63 68 eqtrd ( ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) → 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ )
70 69 adantl ( ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) ) → 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ )
71 70 3mix2d ( ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) )
72 71 ex ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
73 62 72 jaod ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) ∨ ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 0 , 𝑦 ⟩ ) ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
74 54 73 sylbid ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { 𝑋 , 𝑌 } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
75 opex ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∈ V
76 51 75 pm3.2i ( ⟨ 1 , 𝑦 ⟩ ∈ V ∧ ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∈ V )
77 preq12bg ( ( ( 𝑋𝑉𝑌𝑉 ) ∧ ( ⟨ 1 , 𝑦 ⟩ ∈ V ∧ ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∈ V ) ) → ( { 𝑋 , 𝑌 } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } ↔ ( ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ) ∨ ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) ) ) )
78 18 76 77 sylancl ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { 𝑋 , 𝑌 } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } ↔ ( ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ) ∨ ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) ) ) )
79 simpr ( ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ) → 𝑌 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ )
80 66 oveq1d ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( 𝑦 + 𝐾 ) = ( ( 2nd𝑋 ) + 𝐾 ) )
81 80 oveq1d ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( ( 𝑦 + 𝐾 ) mod 𝑁 ) = ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) )
82 81 adantr ( ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ) → ( ( 𝑦 + 𝐾 ) mod 𝑁 ) = ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) )
83 82 opeq2d ( ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ) → ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ )
84 79 83 eqtrd ( ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ) → 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ )
85 84 3mix1d ( ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) )
86 85 a1i ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
87 elfzoelz ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑦 ∈ ℤ )
88 87 zred ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑦 ∈ ℝ )
89 88 adantl ( ( 𝐾𝐽𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝑦 ∈ ℝ )
90 elfzoelz ( 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) → 𝐾 ∈ ℤ )
91 90 zred ( 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) → 𝐾 ∈ ℝ )
92 6 91 sylbi ( 𝐾𝐽𝐾 ∈ ℝ )
93 92 adantr ( ( 𝐾𝐽𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝐾 ∈ ℝ )
94 89 93 readdcld ( ( 𝐾𝐽𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑦 + 𝐾 ) ∈ ℝ )
95 elfzo0 ( 𝑦 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑦 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) )
96 nnrp ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ )
97 96 3ad2ant2 ( ( 𝑦 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) → 𝑁 ∈ ℝ+ )
98 95 97 sylbi ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℝ+ )
99 98 adantl ( ( 𝐾𝐽𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ+ )
100 modsubmod ( ( ( 𝑦 + 𝐾 ) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) = ( ( ( 𝑦 + 𝐾 ) − 𝐾 ) mod 𝑁 ) )
101 94 93 99 100 syl3anc ( ( 𝐾𝐽𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) = ( ( ( 𝑦 + 𝐾 ) − 𝐾 ) mod 𝑁 ) )
102 87 zcnd ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑦 ∈ ℂ )
103 102 adantl ( ( 𝐾𝐽𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝑦 ∈ ℂ )
104 93 recnd ( ( 𝐾𝐽𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝐾 ∈ ℂ )
105 103 104 pncand ( ( 𝐾𝐽𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑦 + 𝐾 ) − 𝐾 ) = 𝑦 )
106 105 oveq1d ( ( 𝐾𝐽𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑦 + 𝐾 ) − 𝐾 ) mod 𝑁 ) = ( 𝑦 mod 𝑁 ) )
107 zmodidfzoimp ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( 𝑦 mod 𝑁 ) = 𝑦 )
108 107 adantl ( ( 𝐾𝐽𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑦 mod 𝑁 ) = 𝑦 )
109 101 106 108 3eqtrrd ( ( 𝐾𝐽𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝑦 = ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) )
110 109 ex ( 𝐾𝐽 → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑦 = ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ) )
111 110 adantl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑦 = ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ) )
112 111 3ad2ant1 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑦 = ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ) )
113 112 imp ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝑦 = ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) )
114 113 adantr ( ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) ) → 𝑦 = ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) )
115 114 opeq2d ( ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ⟩ )
116 simpr ( ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) → 𝑌 = ⟨ 1 , 𝑦 ⟩ )
117 ovex ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ∈ V
118 64 117 op2ndd ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ → ( 2nd𝑋 ) = ( ( 𝑦 + 𝐾 ) mod 𝑁 ) )
119 118 oveq1d ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ → ( ( 2nd𝑋 ) − 𝐾 ) = ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) )
120 119 oveq1d ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ → ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) = ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) )
121 120 opeq2d ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ → ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ = ⟨ 1 , ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ⟩ )
122 121 adantr ( ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) → ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ = ⟨ 1 , ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ⟩ )
123 116 122 eqeq12d ( ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ↔ ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ⟩ ) )
124 123 adantl ( ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ↔ ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ⟩ ) )
125 115 124 mpbird ( ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) ) → 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ )
126 125 3mix3d ( ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) )
127 126 ex ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
128 86 127 jaod ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑋 = ⟨ 1 , 𝑦 ⟩ ∧ 𝑌 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ) ∨ ( 𝑋 = ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ ∧ 𝑌 = ⟨ 1 , 𝑦 ⟩ ) ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
129 78 128 sylbid ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { 𝑋 , 𝑌 } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
130 50 74 129 3jaod ( ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( { 𝑋 , 𝑌 } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∨ { 𝑋 , 𝑌 } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∨ { 𝑋 , 𝑌 } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
131 130 rexlimdva ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( { 𝑋 , 𝑌 } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) ⟩ } ∨ { 𝑋 , 𝑌 } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∨ { 𝑋 , 𝑌 } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ⟩ } ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
132 16 131 sylbid ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( { 𝑋 , 𝑌 } ∈ 𝐸 → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
133 132 3exp ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( ( 1st𝑋 ) = 1 → ( ( 𝑋𝑉𝑌𝑉 ) → ( { 𝑋 , 𝑌 } ∈ 𝐸 → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) ) )
134 133 com34 ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( ( 1st𝑋 ) = 1 → ( { 𝑋 , 𝑌 } ∈ 𝐸 → ( ( 𝑋𝑉𝑌𝑉 ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) ) ) )
135 134 3imp ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ { 𝑋 , 𝑌 } ∈ 𝐸 ) → ( ( 𝑋𝑉𝑌𝑉 ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) ) )
136 13 135 mpd ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 1st𝑋 ) = 1 ∧ { 𝑋 , 𝑌 } ∈ 𝐸 ) → ( 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 𝐾 ) mod 𝑁 ) ⟩ ∨ 𝑌 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝑌 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 𝐾 ) mod 𝑁 ) ⟩ ) )