Step |
Hyp |
Ref |
Expression |
1 |
|
gpgedgvtx0.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
2 |
|
gpgedgvtx0.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
3 |
|
gpgedgvtx0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
4 |
|
gpgedgvtx0.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
5 |
|
gpgusgra |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph ) |
6 |
1
|
eleq2i |
⊢ ( 𝐾 ∈ 𝐽 ↔ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
7 |
6
|
anbi2i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) ) |
8 |
2
|
eleq1i |
⊢ ( 𝐺 ∈ USGraph ↔ ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph ) |
9 |
5 7 8
|
3imtr4i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → 𝐺 ∈ USGraph ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ { 𝑋 , 𝑌 } ∈ 𝐸 ) → 𝐺 ∈ USGraph ) |
11 |
|
simp3 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ { 𝑋 , 𝑌 } ∈ 𝐸 ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) |
12 |
4 3
|
usgrpredgv |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝑋 , 𝑌 } ∈ 𝐸 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) |
13 |
10 11 12
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ { 𝑋 , 𝑌 } ∈ 𝐸 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) |
14 |
|
eqid |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 ) |
15 |
14 1 2 4
|
gpgedgel |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( { 𝑋 , 𝑌 } ∈ 𝐸 ↔ ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( { 𝑋 , 𝑌 } = { 〈 0 , 𝑦 〉 , 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 } ∨ { 𝑋 , 𝑌 } = { 〈 0 , 𝑦 〉 , 〈 1 , 𝑦 〉 } ∨ { 𝑋 , 𝑌 } = { 〈 1 , 𝑦 〉 , 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 } ) ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( { 𝑋 , 𝑌 } ∈ 𝐸 ↔ ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( { 𝑋 , 𝑌 } = { 〈 0 , 𝑦 〉 , 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 } ∨ { 𝑋 , 𝑌 } = { 〈 0 , 𝑦 〉 , 〈 1 , 𝑦 〉 } ∨ { 𝑋 , 𝑌 } = { 〈 1 , 𝑦 〉 , 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 } ) ) ) |
17 |
|
simp3 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) |
19 |
|
opex |
⊢ 〈 0 , 𝑦 〉 ∈ V |
20 |
|
opex |
⊢ 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ V |
21 |
19 20
|
pm3.2i |
⊢ ( 〈 0 , 𝑦 〉 ∈ V ∧ 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ V ) |
22 |
|
preq12bg |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 〈 0 , 𝑦 〉 ∈ V ∧ 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∈ V ) ) → ( { 𝑋 , 𝑌 } = { 〈 0 , 𝑦 〉 , 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 } ↔ ( ( 𝑋 = 〈 0 , 𝑦 〉 ∧ 𝑌 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ) ∨ ( 𝑋 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) ) ) ) |
23 |
18 21 22
|
sylancl |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { 𝑋 , 𝑌 } = { 〈 0 , 𝑦 〉 , 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 } ↔ ( ( 𝑋 = 〈 0 , 𝑦 〉 ∧ 𝑌 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ) ∨ ( 𝑋 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) ) ) ) |
24 |
|
c0ex |
⊢ 0 ∈ V |
25 |
|
vex |
⊢ 𝑦 ∈ V |
26 |
24 25
|
op1std |
⊢ ( 𝑋 = 〈 0 , 𝑦 〉 → ( 1st ‘ 𝑋 ) = 0 ) |
27 |
26
|
eqeq1d |
⊢ ( 𝑋 = 〈 0 , 𝑦 〉 → ( ( 1st ‘ 𝑋 ) = 1 ↔ 0 = 1 ) ) |
28 |
|
eqcom |
⊢ ( 0 = 1 ↔ 1 = 0 ) |
29 |
27 28
|
bitrdi |
⊢ ( 𝑋 = 〈 0 , 𝑦 〉 → ( ( 1st ‘ 𝑋 ) = 1 ↔ 1 = 0 ) ) |
30 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
31 |
|
eqneqall |
⊢ ( 1 = 0 → ( 1 ≠ 0 → ( 𝑌 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
32 |
31
|
com12 |
⊢ ( 1 ≠ 0 → ( 1 = 0 → ( 𝑌 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
33 |
30 32
|
mp1i |
⊢ ( 𝑋 = 〈 0 , 𝑦 〉 → ( 1 = 0 → ( 𝑌 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
34 |
29 33
|
sylbid |
⊢ ( 𝑋 = 〈 0 , 𝑦 〉 → ( ( 1st ‘ 𝑋 ) = 1 → ( 𝑌 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
35 |
34
|
com12 |
⊢ ( ( 1st ‘ 𝑋 ) = 1 → ( 𝑋 = 〈 0 , 𝑦 〉 → ( 𝑌 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
36 |
35
|
impd |
⊢ ( ( 1st ‘ 𝑋 ) = 1 → ( ( 𝑋 = 〈 0 , 𝑦 〉 ∧ 𝑌 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
37 |
|
ovex |
⊢ ( ( 𝑦 + 1 ) mod 𝑁 ) ∈ V |
38 |
24 37
|
op1std |
⊢ ( 𝑋 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 → ( 1st ‘ 𝑋 ) = 0 ) |
39 |
38
|
eqeq1d |
⊢ ( 𝑋 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 → ( ( 1st ‘ 𝑋 ) = 1 ↔ 0 = 1 ) ) |
40 |
39 28
|
bitrdi |
⊢ ( 𝑋 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 → ( ( 1st ‘ 𝑋 ) = 1 ↔ 1 = 0 ) ) |
41 |
|
eqneqall |
⊢ ( 1 = 0 → ( 1 ≠ 0 → ( 𝑌 = 〈 0 , 𝑦 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
42 |
41
|
com12 |
⊢ ( 1 ≠ 0 → ( 1 = 0 → ( 𝑌 = 〈 0 , 𝑦 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
43 |
30 42
|
mp1i |
⊢ ( 𝑋 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 → ( 1 = 0 → ( 𝑌 = 〈 0 , 𝑦 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
44 |
40 43
|
sylbid |
⊢ ( 𝑋 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 → ( ( 1st ‘ 𝑋 ) = 1 → ( 𝑌 = 〈 0 , 𝑦 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
45 |
44
|
com12 |
⊢ ( ( 1st ‘ 𝑋 ) = 1 → ( 𝑋 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 → ( 𝑌 = 〈 0 , 𝑦 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
46 |
45
|
impd |
⊢ ( ( 1st ‘ 𝑋 ) = 1 → ( ( 𝑋 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
47 |
36 46
|
jaod |
⊢ ( ( 1st ‘ 𝑋 ) = 1 → ( ( ( 𝑋 = 〈 0 , 𝑦 〉 ∧ 𝑌 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ) ∨ ( 𝑋 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
48 |
47
|
3ad2ant2 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝑋 = 〈 0 , 𝑦 〉 ∧ 𝑌 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ) ∨ ( 𝑋 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
49 |
48
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑋 = 〈 0 , 𝑦 〉 ∧ 𝑌 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ) ∨ ( 𝑋 = 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
50 |
23 49
|
sylbid |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { 𝑋 , 𝑌 } = { 〈 0 , 𝑦 〉 , 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 } → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
51 |
|
opex |
⊢ 〈 1 , 𝑦 〉 ∈ V |
52 |
19 51
|
pm3.2i |
⊢ ( 〈 0 , 𝑦 〉 ∈ V ∧ 〈 1 , 𝑦 〉 ∈ V ) |
53 |
|
preq12bg |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 〈 0 , 𝑦 〉 ∈ V ∧ 〈 1 , 𝑦 〉 ∈ V ) ) → ( { 𝑋 , 𝑌 } = { 〈 0 , 𝑦 〉 , 〈 1 , 𝑦 〉 } ↔ ( ( 𝑋 = 〈 0 , 𝑦 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) ∨ ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) ) ) ) |
54 |
18 52 53
|
sylancl |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { 𝑋 , 𝑌 } = { 〈 0 , 𝑦 〉 , 〈 1 , 𝑦 〉 } ↔ ( ( 𝑋 = 〈 0 , 𝑦 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) ∨ ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) ) ) ) |
55 |
|
eqneqall |
⊢ ( 1 = 0 → ( 1 ≠ 0 → ( 𝑌 = 〈 1 , 𝑦 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
56 |
55
|
com12 |
⊢ ( 1 ≠ 0 → ( 1 = 0 → ( 𝑌 = 〈 1 , 𝑦 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
57 |
30 56
|
mp1i |
⊢ ( 𝑋 = 〈 0 , 𝑦 〉 → ( 1 = 0 → ( 𝑌 = 〈 1 , 𝑦 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
58 |
29 57
|
sylbid |
⊢ ( 𝑋 = 〈 0 , 𝑦 〉 → ( ( 1st ‘ 𝑋 ) = 1 → ( 𝑌 = 〈 1 , 𝑦 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
59 |
58
|
com12 |
⊢ ( ( 1st ‘ 𝑋 ) = 1 → ( 𝑋 = 〈 0 , 𝑦 〉 → ( 𝑌 = 〈 1 , 𝑦 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
60 |
59
|
3ad2ant2 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 = 〈 0 , 𝑦 〉 → ( 𝑌 = 〈 1 , 𝑦 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
61 |
60
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑋 = 〈 0 , 𝑦 〉 → ( 𝑌 = 〈 1 , 𝑦 〉 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) |
62 |
61
|
impd |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑋 = 〈 0 , 𝑦 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
63 |
|
simpr |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) → 𝑌 = 〈 0 , 𝑦 〉 ) |
64 |
|
1ex |
⊢ 1 ∈ V |
65 |
64 25
|
op2ndd |
⊢ ( 𝑋 = 〈 1 , 𝑦 〉 → ( 2nd ‘ 𝑋 ) = 𝑦 ) |
66 |
65
|
eqcomd |
⊢ ( 𝑋 = 〈 1 , 𝑦 〉 → 𝑦 = ( 2nd ‘ 𝑋 ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) → 𝑦 = ( 2nd ‘ 𝑋 ) ) |
68 |
67
|
opeq2d |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) → 〈 0 , 𝑦 〉 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) |
69 |
63 68
|
eqtrd |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) → 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) |
70 |
69
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) ) → 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) |
71 |
70
|
3mix2d |
⊢ ( ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) |
72 |
71
|
ex |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
73 |
62 72
|
jaod |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑋 = 〈 0 , 𝑦 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) ∨ ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 0 , 𝑦 〉 ) ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
74 |
54 73
|
sylbid |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { 𝑋 , 𝑌 } = { 〈 0 , 𝑦 〉 , 〈 1 , 𝑦 〉 } → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
75 |
|
opex |
⊢ 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ V |
76 |
51 75
|
pm3.2i |
⊢ ( 〈 1 , 𝑦 〉 ∈ V ∧ 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ V ) |
77 |
|
preq12bg |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 〈 1 , 𝑦 〉 ∈ V ∧ 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∈ V ) ) → ( { 𝑋 , 𝑌 } = { 〈 1 , 𝑦 〉 , 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 } ↔ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ) ∨ ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) ) ) ) |
78 |
18 76 77
|
sylancl |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { 𝑋 , 𝑌 } = { 〈 1 , 𝑦 〉 , 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 } ↔ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ) ∨ ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) ) ) ) |
79 |
|
simpr |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ) → 𝑌 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ) |
80 |
66
|
oveq1d |
⊢ ( 𝑋 = 〈 1 , 𝑦 〉 → ( 𝑦 + 𝐾 ) = ( ( 2nd ‘ 𝑋 ) + 𝐾 ) ) |
81 |
80
|
oveq1d |
⊢ ( 𝑋 = 〈 1 , 𝑦 〉 → ( ( 𝑦 + 𝐾 ) mod 𝑁 ) = ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) ) |
82 |
81
|
adantr |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ) → ( ( 𝑦 + 𝐾 ) mod 𝑁 ) = ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) ) |
83 |
82
|
opeq2d |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ) → 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ) |
84 |
79 83
|
eqtrd |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ) → 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ) |
85 |
84
|
3mix1d |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) |
86 |
85
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
87 |
|
elfzoelz |
⊢ ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑦 ∈ ℤ ) |
88 |
87
|
zred |
⊢ ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑦 ∈ ℝ ) |
89 |
88
|
adantl |
⊢ ( ( 𝐾 ∈ 𝐽 ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝑦 ∈ ℝ ) |
90 |
|
elfzoelz |
⊢ ( 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) → 𝐾 ∈ ℤ ) |
91 |
90
|
zred |
⊢ ( 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) → 𝐾 ∈ ℝ ) |
92 |
6 91
|
sylbi |
⊢ ( 𝐾 ∈ 𝐽 → 𝐾 ∈ ℝ ) |
93 |
92
|
adantr |
⊢ ( ( 𝐾 ∈ 𝐽 ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝐾 ∈ ℝ ) |
94 |
89 93
|
readdcld |
⊢ ( ( 𝐾 ∈ 𝐽 ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑦 + 𝐾 ) ∈ ℝ ) |
95 |
|
elfzo0 |
⊢ ( 𝑦 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑦 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) ) |
96 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
97 |
96
|
3ad2ant2 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁 ) → 𝑁 ∈ ℝ+ ) |
98 |
95 97
|
sylbi |
⊢ ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℝ+ ) |
99 |
98
|
adantl |
⊢ ( ( 𝐾 ∈ 𝐽 ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ+ ) |
100 |
|
modsubmod |
⊢ ( ( ( 𝑦 + 𝐾 ) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) = ( ( ( 𝑦 + 𝐾 ) − 𝐾 ) mod 𝑁 ) ) |
101 |
94 93 99 100
|
syl3anc |
⊢ ( ( 𝐾 ∈ 𝐽 ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) = ( ( ( 𝑦 + 𝐾 ) − 𝐾 ) mod 𝑁 ) ) |
102 |
87
|
zcnd |
⊢ ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑦 ∈ ℂ ) |
103 |
102
|
adantl |
⊢ ( ( 𝐾 ∈ 𝐽 ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝑦 ∈ ℂ ) |
104 |
93
|
recnd |
⊢ ( ( 𝐾 ∈ 𝐽 ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝐾 ∈ ℂ ) |
105 |
103 104
|
pncand |
⊢ ( ( 𝐾 ∈ 𝐽 ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑦 + 𝐾 ) − 𝐾 ) = 𝑦 ) |
106 |
105
|
oveq1d |
⊢ ( ( 𝐾 ∈ 𝐽 ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑦 + 𝐾 ) − 𝐾 ) mod 𝑁 ) = ( 𝑦 mod 𝑁 ) ) |
107 |
|
zmodidfzoimp |
⊢ ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( 𝑦 mod 𝑁 ) = 𝑦 ) |
108 |
107
|
adantl |
⊢ ( ( 𝐾 ∈ 𝐽 ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑦 mod 𝑁 ) = 𝑦 ) |
109 |
101 106 108
|
3eqtrrd |
⊢ ( ( 𝐾 ∈ 𝐽 ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝑦 = ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ) |
110 |
109
|
ex |
⊢ ( 𝐾 ∈ 𝐽 → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑦 = ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ) ) |
111 |
110
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑦 = ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ) ) |
112 |
111
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → 𝑦 = ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ) ) |
113 |
112
|
imp |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → 𝑦 = ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ) |
114 |
113
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) ) → 𝑦 = ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ) |
115 |
114
|
opeq2d |
⊢ ( ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) ) → 〈 1 , 𝑦 〉 = 〈 1 , ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) 〉 ) |
116 |
|
simpr |
⊢ ( ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) → 𝑌 = 〈 1 , 𝑦 〉 ) |
117 |
|
ovex |
⊢ ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ∈ V |
118 |
64 117
|
op2ndd |
⊢ ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 → ( 2nd ‘ 𝑋 ) = ( ( 𝑦 + 𝐾 ) mod 𝑁 ) ) |
119 |
118
|
oveq1d |
⊢ ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 → ( ( 2nd ‘ 𝑋 ) − 𝐾 ) = ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) ) |
120 |
119
|
oveq1d |
⊢ ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 → ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) = ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) ) |
121 |
120
|
opeq2d |
⊢ ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 → 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) 〉 ) |
122 |
121
|
adantr |
⊢ ( ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) → 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) 〉 ) |
123 |
116 122
|
eqeq12d |
⊢ ( ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ↔ 〈 1 , 𝑦 〉 = 〈 1 , ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) |
124 |
123
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ↔ 〈 1 , 𝑦 〉 = 〈 1 , ( ( ( ( 𝑦 + 𝐾 ) mod 𝑁 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) |
125 |
115 124
|
mpbird |
⊢ ( ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) ) → 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) |
126 |
125
|
3mix3d |
⊢ ( ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) |
127 |
126
|
ex |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
128 |
86 127
|
jaod |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑌 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ) ∨ ( 𝑋 = 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 ∧ 𝑌 = 〈 1 , 𝑦 〉 ) ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
129 |
78 128
|
sylbid |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( { 𝑋 , 𝑌 } = { 〈 1 , 𝑦 〉 , 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 } → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
130 |
50 74 129
|
3jaod |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( { 𝑋 , 𝑌 } = { 〈 0 , 𝑦 〉 , 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 } ∨ { 𝑋 , 𝑌 } = { 〈 0 , 𝑦 〉 , 〈 1 , 𝑦 〉 } ∨ { 𝑋 , 𝑌 } = { 〈 1 , 𝑦 〉 , 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 } ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
131 |
130
|
rexlimdva |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ∃ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( { 𝑋 , 𝑌 } = { 〈 0 , 𝑦 〉 , 〈 0 , ( ( 𝑦 + 1 ) mod 𝑁 ) 〉 } ∨ { 𝑋 , 𝑌 } = { 〈 0 , 𝑦 〉 , 〈 1 , 𝑦 〉 } ∨ { 𝑋 , 𝑌 } = { 〈 1 , 𝑦 〉 , 〈 1 , ( ( 𝑦 + 𝐾 ) mod 𝑁 ) 〉 } ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
132 |
16 131
|
sylbid |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( { 𝑋 , 𝑌 } ∈ 𝐸 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
133 |
132
|
3exp |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( ( 1st ‘ 𝑋 ) = 1 → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( { 𝑋 , 𝑌 } ∈ 𝐸 → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) ) |
134 |
133
|
com34 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( ( 1st ‘ 𝑋 ) = 1 → ( { 𝑋 , 𝑌 } ∈ 𝐸 → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) ) ) |
135 |
134
|
3imp |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ { 𝑋 , 𝑌 } ∈ 𝐸 ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) ) |
136 |
13 135
|
mpd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 1st ‘ 𝑋 ) = 1 ∧ { 𝑋 , 𝑌 } ∈ 𝐸 ) → ( 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 𝐾 ) mod 𝑁 ) 〉 ∨ 𝑌 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝑌 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 𝐾 ) mod 𝑁 ) 〉 ) ) |