Step |
Hyp |
Ref |
Expression |
1 |
|
gpgedgvtx0.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
2 |
|
gpgedgvtx0.g |
|- G = ( N gPetersenGr K ) |
3 |
|
gpgedgvtx0.v |
|- V = ( Vtx ` G ) |
4 |
|
gpgedgvtx0.e |
|- E = ( Edg ` G ) |
5 |
|
gpgusgra |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) |
6 |
1
|
eleq2i |
|- ( K e. J <-> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
7 |
6
|
anbi2i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) <-> ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) ) |
8 |
2
|
eleq1i |
|- ( G e. USGraph <-> ( N gPetersenGr K ) e. USGraph ) |
9 |
5 7 8
|
3imtr4i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> G e. USGraph ) |
10 |
9
|
3ad2ant1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ { X , Y } e. E ) -> G e. USGraph ) |
11 |
|
simp3 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ { X , Y } e. E ) -> { X , Y } e. E ) |
12 |
4 3
|
usgrpredgv |
|- ( ( G e. USGraph /\ { X , Y } e. E ) -> ( X e. V /\ Y e. V ) ) |
13 |
10 11 12
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ { X , Y } e. E ) -> ( X e. V /\ Y e. V ) ) |
14 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
15 |
14 1 2 4
|
gpgedgel |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( { X , Y } e. E <-> E. y e. ( 0 ..^ N ) ( { X , Y } = { <. 0 , y >. , <. 0 , ( ( y + 1 ) mod N ) >. } \/ { X , Y } = { <. 0 , y >. , <. 1 , y >. } \/ { X , Y } = { <. 1 , y >. , <. 1 , ( ( y + K ) mod N ) >. } ) ) ) |
16 |
15
|
3ad2ant1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) -> ( { X , Y } e. E <-> E. y e. ( 0 ..^ N ) ( { X , Y } = { <. 0 , y >. , <. 0 , ( ( y + 1 ) mod N ) >. } \/ { X , Y } = { <. 0 , y >. , <. 1 , y >. } \/ { X , Y } = { <. 1 , y >. , <. 1 , ( ( y + K ) mod N ) >. } ) ) ) |
17 |
|
simp3 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) -> ( X e. V /\ Y e. V ) ) |
18 |
17
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( X e. V /\ Y e. V ) ) |
19 |
|
opex |
|- <. 0 , y >. e. _V |
20 |
|
opex |
|- <. 0 , ( ( y + 1 ) mod N ) >. e. _V |
21 |
19 20
|
pm3.2i |
|- ( <. 0 , y >. e. _V /\ <. 0 , ( ( y + 1 ) mod N ) >. e. _V ) |
22 |
|
preq12bg |
|- ( ( ( X e. V /\ Y e. V ) /\ ( <. 0 , y >. e. _V /\ <. 0 , ( ( y + 1 ) mod N ) >. e. _V ) ) -> ( { X , Y } = { <. 0 , y >. , <. 0 , ( ( y + 1 ) mod N ) >. } <-> ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) \/ ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) ) ) ) |
23 |
18 21 22
|
sylancl |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( { X , Y } = { <. 0 , y >. , <. 0 , ( ( y + 1 ) mod N ) >. } <-> ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) \/ ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) ) ) ) |
24 |
|
c0ex |
|- 0 e. _V |
25 |
|
vex |
|- y e. _V |
26 |
24 25
|
op1std |
|- ( X = <. 0 , y >. -> ( 1st ` X ) = 0 ) |
27 |
26
|
eqeq1d |
|- ( X = <. 0 , y >. -> ( ( 1st ` X ) = 1 <-> 0 = 1 ) ) |
28 |
|
eqcom |
|- ( 0 = 1 <-> 1 = 0 ) |
29 |
27 28
|
bitrdi |
|- ( X = <. 0 , y >. -> ( ( 1st ` X ) = 1 <-> 1 = 0 ) ) |
30 |
|
ax-1ne0 |
|- 1 =/= 0 |
31 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> ( Y = <. 0 , ( ( y + 1 ) mod N ) >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
32 |
31
|
com12 |
|- ( 1 =/= 0 -> ( 1 = 0 -> ( Y = <. 0 , ( ( y + 1 ) mod N ) >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
33 |
30 32
|
mp1i |
|- ( X = <. 0 , y >. -> ( 1 = 0 -> ( Y = <. 0 , ( ( y + 1 ) mod N ) >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
34 |
29 33
|
sylbid |
|- ( X = <. 0 , y >. -> ( ( 1st ` X ) = 1 -> ( Y = <. 0 , ( ( y + 1 ) mod N ) >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
35 |
34
|
com12 |
|- ( ( 1st ` X ) = 1 -> ( X = <. 0 , y >. -> ( Y = <. 0 , ( ( y + 1 ) mod N ) >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
36 |
35
|
impd |
|- ( ( 1st ` X ) = 1 -> ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
37 |
|
ovex |
|- ( ( y + 1 ) mod N ) e. _V |
38 |
24 37
|
op1std |
|- ( X = <. 0 , ( ( y + 1 ) mod N ) >. -> ( 1st ` X ) = 0 ) |
39 |
38
|
eqeq1d |
|- ( X = <. 0 , ( ( y + 1 ) mod N ) >. -> ( ( 1st ` X ) = 1 <-> 0 = 1 ) ) |
40 |
39 28
|
bitrdi |
|- ( X = <. 0 , ( ( y + 1 ) mod N ) >. -> ( ( 1st ` X ) = 1 <-> 1 = 0 ) ) |
41 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> ( Y = <. 0 , y >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
42 |
41
|
com12 |
|- ( 1 =/= 0 -> ( 1 = 0 -> ( Y = <. 0 , y >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
43 |
30 42
|
mp1i |
|- ( X = <. 0 , ( ( y + 1 ) mod N ) >. -> ( 1 = 0 -> ( Y = <. 0 , y >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
44 |
40 43
|
sylbid |
|- ( X = <. 0 , ( ( y + 1 ) mod N ) >. -> ( ( 1st ` X ) = 1 -> ( Y = <. 0 , y >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
45 |
44
|
com12 |
|- ( ( 1st ` X ) = 1 -> ( X = <. 0 , ( ( y + 1 ) mod N ) >. -> ( Y = <. 0 , y >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
46 |
45
|
impd |
|- ( ( 1st ` X ) = 1 -> ( ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
47 |
36 46
|
jaod |
|- ( ( 1st ` X ) = 1 -> ( ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) \/ ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
48 |
47
|
3ad2ant2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) -> ( ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) \/ ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
49 |
48
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) \/ ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
50 |
23 49
|
sylbid |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( { X , Y } = { <. 0 , y >. , <. 0 , ( ( y + 1 ) mod N ) >. } -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
51 |
|
opex |
|- <. 1 , y >. e. _V |
52 |
19 51
|
pm3.2i |
|- ( <. 0 , y >. e. _V /\ <. 1 , y >. e. _V ) |
53 |
|
preq12bg |
|- ( ( ( X e. V /\ Y e. V ) /\ ( <. 0 , y >. e. _V /\ <. 1 , y >. e. _V ) ) -> ( { X , Y } = { <. 0 , y >. , <. 1 , y >. } <-> ( ( X = <. 0 , y >. /\ Y = <. 1 , y >. ) \/ ( X = <. 1 , y >. /\ Y = <. 0 , y >. ) ) ) ) |
54 |
18 52 53
|
sylancl |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( { X , Y } = { <. 0 , y >. , <. 1 , y >. } <-> ( ( X = <. 0 , y >. /\ Y = <. 1 , y >. ) \/ ( X = <. 1 , y >. /\ Y = <. 0 , y >. ) ) ) ) |
55 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> ( Y = <. 1 , y >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
56 |
55
|
com12 |
|- ( 1 =/= 0 -> ( 1 = 0 -> ( Y = <. 1 , y >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
57 |
30 56
|
mp1i |
|- ( X = <. 0 , y >. -> ( 1 = 0 -> ( Y = <. 1 , y >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
58 |
29 57
|
sylbid |
|- ( X = <. 0 , y >. -> ( ( 1st ` X ) = 1 -> ( Y = <. 1 , y >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
59 |
58
|
com12 |
|- ( ( 1st ` X ) = 1 -> ( X = <. 0 , y >. -> ( Y = <. 1 , y >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
60 |
59
|
3ad2ant2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) -> ( X = <. 0 , y >. -> ( Y = <. 1 , y >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
61 |
60
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( X = <. 0 , y >. -> ( Y = <. 1 , y >. -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) |
62 |
61
|
impd |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( X = <. 0 , y >. /\ Y = <. 1 , y >. ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
63 |
|
simpr |
|- ( ( X = <. 1 , y >. /\ Y = <. 0 , y >. ) -> Y = <. 0 , y >. ) |
64 |
|
1ex |
|- 1 e. _V |
65 |
64 25
|
op2ndd |
|- ( X = <. 1 , y >. -> ( 2nd ` X ) = y ) |
66 |
65
|
eqcomd |
|- ( X = <. 1 , y >. -> y = ( 2nd ` X ) ) |
67 |
66
|
adantr |
|- ( ( X = <. 1 , y >. /\ Y = <. 0 , y >. ) -> y = ( 2nd ` X ) ) |
68 |
67
|
opeq2d |
|- ( ( X = <. 1 , y >. /\ Y = <. 0 , y >. ) -> <. 0 , y >. = <. 0 , ( 2nd ` X ) >. ) |
69 |
63 68
|
eqtrd |
|- ( ( X = <. 1 , y >. /\ Y = <. 0 , y >. ) -> Y = <. 0 , ( 2nd ` X ) >. ) |
70 |
69
|
adantl |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) /\ ( X = <. 1 , y >. /\ Y = <. 0 , y >. ) ) -> Y = <. 0 , ( 2nd ` X ) >. ) |
71 |
70
|
3mix2d |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) /\ ( X = <. 1 , y >. /\ Y = <. 0 , y >. ) ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) |
72 |
71
|
ex |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( X = <. 1 , y >. /\ Y = <. 0 , y >. ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
73 |
62 72
|
jaod |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( X = <. 0 , y >. /\ Y = <. 1 , y >. ) \/ ( X = <. 1 , y >. /\ Y = <. 0 , y >. ) ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
74 |
54 73
|
sylbid |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( { X , Y } = { <. 0 , y >. , <. 1 , y >. } -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
75 |
|
opex |
|- <. 1 , ( ( y + K ) mod N ) >. e. _V |
76 |
51 75
|
pm3.2i |
|- ( <. 1 , y >. e. _V /\ <. 1 , ( ( y + K ) mod N ) >. e. _V ) |
77 |
|
preq12bg |
|- ( ( ( X e. V /\ Y e. V ) /\ ( <. 1 , y >. e. _V /\ <. 1 , ( ( y + K ) mod N ) >. e. _V ) ) -> ( { X , Y } = { <. 1 , y >. , <. 1 , ( ( y + K ) mod N ) >. } <-> ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) \/ ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) ) ) ) |
78 |
18 76 77
|
sylancl |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( { X , Y } = { <. 1 , y >. , <. 1 , ( ( y + K ) mod N ) >. } <-> ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) \/ ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) ) ) ) |
79 |
|
simpr |
|- ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) -> Y = <. 1 , ( ( y + K ) mod N ) >. ) |
80 |
66
|
oveq1d |
|- ( X = <. 1 , y >. -> ( y + K ) = ( ( 2nd ` X ) + K ) ) |
81 |
80
|
oveq1d |
|- ( X = <. 1 , y >. -> ( ( y + K ) mod N ) = ( ( ( 2nd ` X ) + K ) mod N ) ) |
82 |
81
|
adantr |
|- ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) -> ( ( y + K ) mod N ) = ( ( ( 2nd ` X ) + K ) mod N ) ) |
83 |
82
|
opeq2d |
|- ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) -> <. 1 , ( ( y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. ) |
84 |
79 83
|
eqtrd |
|- ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) -> Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. ) |
85 |
84
|
3mix1d |
|- ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) |
86 |
85
|
a1i |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
87 |
|
elfzoelz |
|- ( y e. ( 0 ..^ N ) -> y e. ZZ ) |
88 |
87
|
zred |
|- ( y e. ( 0 ..^ N ) -> y e. RR ) |
89 |
88
|
adantl |
|- ( ( K e. J /\ y e. ( 0 ..^ N ) ) -> y e. RR ) |
90 |
|
elfzoelz |
|- ( K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) -> K e. ZZ ) |
91 |
90
|
zred |
|- ( K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) -> K e. RR ) |
92 |
6 91
|
sylbi |
|- ( K e. J -> K e. RR ) |
93 |
92
|
adantr |
|- ( ( K e. J /\ y e. ( 0 ..^ N ) ) -> K e. RR ) |
94 |
89 93
|
readdcld |
|- ( ( K e. J /\ y e. ( 0 ..^ N ) ) -> ( y + K ) e. RR ) |
95 |
|
elfzo0 |
|- ( y e. ( 0 ..^ N ) <-> ( y e. NN0 /\ N e. NN /\ y < N ) ) |
96 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
97 |
96
|
3ad2ant2 |
|- ( ( y e. NN0 /\ N e. NN /\ y < N ) -> N e. RR+ ) |
98 |
95 97
|
sylbi |
|- ( y e. ( 0 ..^ N ) -> N e. RR+ ) |
99 |
98
|
adantl |
|- ( ( K e. J /\ y e. ( 0 ..^ N ) ) -> N e. RR+ ) |
100 |
|
modsubmod |
|- ( ( ( y + K ) e. RR /\ K e. RR /\ N e. RR+ ) -> ( ( ( ( y + K ) mod N ) - K ) mod N ) = ( ( ( y + K ) - K ) mod N ) ) |
101 |
94 93 99 100
|
syl3anc |
|- ( ( K e. J /\ y e. ( 0 ..^ N ) ) -> ( ( ( ( y + K ) mod N ) - K ) mod N ) = ( ( ( y + K ) - K ) mod N ) ) |
102 |
87
|
zcnd |
|- ( y e. ( 0 ..^ N ) -> y e. CC ) |
103 |
102
|
adantl |
|- ( ( K e. J /\ y e. ( 0 ..^ N ) ) -> y e. CC ) |
104 |
93
|
recnd |
|- ( ( K e. J /\ y e. ( 0 ..^ N ) ) -> K e. CC ) |
105 |
103 104
|
pncand |
|- ( ( K e. J /\ y e. ( 0 ..^ N ) ) -> ( ( y + K ) - K ) = y ) |
106 |
105
|
oveq1d |
|- ( ( K e. J /\ y e. ( 0 ..^ N ) ) -> ( ( ( y + K ) - K ) mod N ) = ( y mod N ) ) |
107 |
|
zmodidfzoimp |
|- ( y e. ( 0 ..^ N ) -> ( y mod N ) = y ) |
108 |
107
|
adantl |
|- ( ( K e. J /\ y e. ( 0 ..^ N ) ) -> ( y mod N ) = y ) |
109 |
101 106 108
|
3eqtrrd |
|- ( ( K e. J /\ y e. ( 0 ..^ N ) ) -> y = ( ( ( ( y + K ) mod N ) - K ) mod N ) ) |
110 |
109
|
ex |
|- ( K e. J -> ( y e. ( 0 ..^ N ) -> y = ( ( ( ( y + K ) mod N ) - K ) mod N ) ) ) |
111 |
110
|
adantl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( y e. ( 0 ..^ N ) -> y = ( ( ( ( y + K ) mod N ) - K ) mod N ) ) ) |
112 |
111
|
3ad2ant1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) -> ( y e. ( 0 ..^ N ) -> y = ( ( ( ( y + K ) mod N ) - K ) mod N ) ) ) |
113 |
112
|
imp |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> y = ( ( ( ( y + K ) mod N ) - K ) mod N ) ) |
114 |
113
|
adantr |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) /\ ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) ) -> y = ( ( ( ( y + K ) mod N ) - K ) mod N ) ) |
115 |
114
|
opeq2d |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) /\ ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) ) -> <. 1 , y >. = <. 1 , ( ( ( ( y + K ) mod N ) - K ) mod N ) >. ) |
116 |
|
simpr |
|- ( ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) -> Y = <. 1 , y >. ) |
117 |
|
ovex |
|- ( ( y + K ) mod N ) e. _V |
118 |
64 117
|
op2ndd |
|- ( X = <. 1 , ( ( y + K ) mod N ) >. -> ( 2nd ` X ) = ( ( y + K ) mod N ) ) |
119 |
118
|
oveq1d |
|- ( X = <. 1 , ( ( y + K ) mod N ) >. -> ( ( 2nd ` X ) - K ) = ( ( ( y + K ) mod N ) - K ) ) |
120 |
119
|
oveq1d |
|- ( X = <. 1 , ( ( y + K ) mod N ) >. -> ( ( ( 2nd ` X ) - K ) mod N ) = ( ( ( ( y + K ) mod N ) - K ) mod N ) ) |
121 |
120
|
opeq2d |
|- ( X = <. 1 , ( ( y + K ) mod N ) >. -> <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. = <. 1 , ( ( ( ( y + K ) mod N ) - K ) mod N ) >. ) |
122 |
121
|
adantr |
|- ( ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) -> <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. = <. 1 , ( ( ( ( y + K ) mod N ) - K ) mod N ) >. ) |
123 |
116 122
|
eqeq12d |
|- ( ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. <-> <. 1 , y >. = <. 1 , ( ( ( ( y + K ) mod N ) - K ) mod N ) >. ) ) |
124 |
123
|
adantl |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) /\ ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. <-> <. 1 , y >. = <. 1 , ( ( ( ( y + K ) mod N ) - K ) mod N ) >. ) ) |
125 |
115 124
|
mpbird |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) /\ ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) ) -> Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) |
126 |
125
|
3mix3d |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) /\ ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) |
127 |
126
|
ex |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
128 |
86 127
|
jaod |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) \/ ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
129 |
78 128
|
sylbid |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( { X , Y } = { <. 1 , y >. , <. 1 , ( ( y + K ) mod N ) >. } -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
130 |
50 74 129
|
3jaod |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( { X , Y } = { <. 0 , y >. , <. 0 , ( ( y + 1 ) mod N ) >. } \/ { X , Y } = { <. 0 , y >. , <. 1 , y >. } \/ { X , Y } = { <. 1 , y >. , <. 1 , ( ( y + K ) mod N ) >. } ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
131 |
130
|
rexlimdva |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) -> ( E. y e. ( 0 ..^ N ) ( { X , Y } = { <. 0 , y >. , <. 0 , ( ( y + 1 ) mod N ) >. } \/ { X , Y } = { <. 0 , y >. , <. 1 , y >. } \/ { X , Y } = { <. 1 , y >. , <. 1 , ( ( y + K ) mod N ) >. } ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
132 |
16 131
|
sylbid |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ ( X e. V /\ Y e. V ) ) -> ( { X , Y } e. E -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
133 |
132
|
3exp |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( ( 1st ` X ) = 1 -> ( ( X e. V /\ Y e. V ) -> ( { X , Y } e. E -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) ) |
134 |
133
|
com34 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( ( 1st ` X ) = 1 -> ( { X , Y } e. E -> ( ( X e. V /\ Y e. V ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) ) ) |
135 |
134
|
3imp |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ { X , Y } e. E ) -> ( ( X e. V /\ Y e. V ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) ) |
136 |
13 135
|
mpd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 1 /\ { X , Y } e. E ) -> ( Y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. \/ Y = <. 0 , ( 2nd ` X ) >. \/ Y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) |