| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgvtxel.i |
|- I = ( 0 ..^ N ) |
| 2 |
|
gpgvtxel.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
| 3 |
|
gpgvtxel.g |
|- G = ( N gPetersenGr K ) |
| 4 |
|
gpgedgel.e |
|- E = ( Edg ` G ) |
| 5 |
3
|
fveq2i |
|- ( Edg ` G ) = ( Edg ` ( N gPetersenGr K ) ) |
| 6 |
4 5
|
eqtri |
|- E = ( Edg ` ( N gPetersenGr K ) ) |
| 7 |
6
|
eleq2i |
|- ( Y e. E <-> Y e. ( Edg ` ( N gPetersenGr K ) ) ) |
| 8 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
| 9 |
2 1
|
gpgedg |
|- ( ( N e. NN /\ K e. J ) -> ( Edg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) |
| 10 |
8 9
|
sylan |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Edg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) |
| 11 |
10
|
eleq2d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Y e. ( Edg ` ( N gPetersenGr K ) ) <-> Y e. { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) |
| 12 |
7 11
|
bitrid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Y e. E <-> Y e. { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) |
| 13 |
|
eqeq1 |
|- ( e = Y -> ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } <-> Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) ) |
| 14 |
|
eqeq1 |
|- ( e = Y -> ( e = { <. 0 , x >. , <. 1 , x >. } <-> Y = { <. 0 , x >. , <. 1 , x >. } ) ) |
| 15 |
|
eqeq1 |
|- ( e = Y -> ( e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } <-> Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
| 16 |
13 14 15
|
3orbi123d |
|- ( e = Y -> ( ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
| 17 |
16
|
rexbidv |
|- ( e = Y -> ( E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
| 18 |
17
|
elrab |
|- ( Y e. { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } <-> ( Y e. ~P ( { 0 , 1 } X. I ) /\ E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
| 19 |
8
|
anim1i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( N e. NN /\ K e. J ) ) |
| 20 |
1 2
|
gpgiedgdmellem |
|- ( ( N e. NN /\ K e. J ) -> ( E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) -> Y e. ~P ( { 0 , 1 } X. I ) ) ) |
| 21 |
19 20
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) -> Y e. ~P ( { 0 , 1 } X. I ) ) ) |
| 22 |
21
|
pm4.71rd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( Y e. ~P ( { 0 , 1 } X. I ) /\ E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) ) |
| 23 |
18 22
|
bitr4id |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Y e. { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } <-> E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
| 24 |
12 23
|
bitrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Y e. E <-> E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |