Step |
Hyp |
Ref |
Expression |
1 |
|
gpgvtxel.i |
|- I = ( 0 ..^ N ) |
2 |
|
gpgvtxel.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
3 |
|
gpgvtxel.g |
|- G = ( N gPetersenGr K ) |
4 |
|
gpgedgel.e |
|- E = ( Edg ` G ) |
5 |
3
|
fveq2i |
|- ( Edg ` G ) = ( Edg ` ( N gPetersenGr K ) ) |
6 |
4 5
|
eqtri |
|- E = ( Edg ` ( N gPetersenGr K ) ) |
7 |
6
|
eleq2i |
|- ( Y e. E <-> Y e. ( Edg ` ( N gPetersenGr K ) ) ) |
8 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
9 |
2 1
|
gpgedg |
|- ( ( N e. NN /\ K e. J ) -> ( Edg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) |
10 |
8 9
|
sylan |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Edg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) |
11 |
10
|
eleq2d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Y e. ( Edg ` ( N gPetersenGr K ) ) <-> Y e. { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) |
12 |
7 11
|
bitrid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Y e. E <-> Y e. { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) |
13 |
|
eqeq1 |
|- ( e = Y -> ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } <-> Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) ) |
14 |
|
eqeq1 |
|- ( e = Y -> ( e = { <. 0 , x >. , <. 1 , x >. } <-> Y = { <. 0 , x >. , <. 1 , x >. } ) ) |
15 |
|
eqeq1 |
|- ( e = Y -> ( e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } <-> Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
16 |
13 14 15
|
3orbi123d |
|- ( e = Y -> ( ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
17 |
16
|
rexbidv |
|- ( e = Y -> ( E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
18 |
17
|
elrab |
|- ( Y e. { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } <-> ( Y e. ~P ( { 0 , 1 } X. I ) /\ E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
19 |
|
prex |
|- { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } e. _V |
20 |
19
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } e. _V ) |
21 |
|
c0ex |
|- 0 e. _V |
22 |
21
|
prid1 |
|- 0 e. { 0 , 1 } |
23 |
22
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> 0 e. { 0 , 1 } ) |
24 |
|
simpr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> x e. I ) |
25 |
23 24
|
opelxpd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> <. 0 , x >. e. ( { 0 , 1 } X. I ) ) |
26 |
|
elfzoelz |
|- ( x e. ( 0 ..^ N ) -> x e. ZZ ) |
27 |
26 1
|
eleq2s |
|- ( x e. I -> x e. ZZ ) |
28 |
27
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> x e. ZZ ) |
29 |
28
|
peano2zd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> ( x + 1 ) e. ZZ ) |
30 |
8
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> N e. NN ) |
31 |
30
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> N e. NN ) |
32 |
|
zmodfzo |
|- ( ( ( x + 1 ) e. ZZ /\ N e. NN ) -> ( ( x + 1 ) mod N ) e. ( 0 ..^ N ) ) |
33 |
29 31 32
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> ( ( x + 1 ) mod N ) e. ( 0 ..^ N ) ) |
34 |
33 1
|
eleqtrrdi |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> ( ( x + 1 ) mod N ) e. I ) |
35 |
23 34
|
opelxpd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> <. 0 , ( ( x + 1 ) mod N ) >. e. ( { 0 , 1 } X. I ) ) |
36 |
25 35
|
prssd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } C_ ( { 0 , 1 } X. I ) ) |
37 |
20 36
|
elpwd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } e. ~P ( { 0 , 1 } X. I ) ) |
38 |
|
eleq1 |
|- ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } -> ( Y e. ~P ( { 0 , 1 } X. I ) <-> { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } e. ~P ( { 0 , 1 } X. I ) ) ) |
39 |
37 38
|
syl5ibrcom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } -> Y e. ~P ( { 0 , 1 } X. I ) ) ) |
40 |
|
prex |
|- { <. 0 , x >. , <. 1 , x >. } e. _V |
41 |
40
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> { <. 0 , x >. , <. 1 , x >. } e. _V ) |
42 |
|
1ex |
|- 1 e. _V |
43 |
42
|
prid2 |
|- 1 e. { 0 , 1 } |
44 |
43
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> 1 e. { 0 , 1 } ) |
45 |
44 24
|
opelxpd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> <. 1 , x >. e. ( { 0 , 1 } X. I ) ) |
46 |
25 45
|
prssd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> { <. 0 , x >. , <. 1 , x >. } C_ ( { 0 , 1 } X. I ) ) |
47 |
41 46
|
elpwd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> { <. 0 , x >. , <. 1 , x >. } e. ~P ( { 0 , 1 } X. I ) ) |
48 |
|
eleq1 |
|- ( Y = { <. 0 , x >. , <. 1 , x >. } -> ( Y e. ~P ( { 0 , 1 } X. I ) <-> { <. 0 , x >. , <. 1 , x >. } e. ~P ( { 0 , 1 } X. I ) ) ) |
49 |
47 48
|
syl5ibrcom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> ( Y = { <. 0 , x >. , <. 1 , x >. } -> Y e. ~P ( { 0 , 1 } X. I ) ) ) |
50 |
|
prex |
|- { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } e. _V |
51 |
50
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } e. _V ) |
52 |
|
elfzoelz |
|- ( K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) -> K e. ZZ ) |
53 |
52 2
|
eleq2s |
|- ( K e. J -> K e. ZZ ) |
54 |
53
|
adantl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> K e. ZZ ) |
55 |
54
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> K e. ZZ ) |
56 |
28 55
|
zaddcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> ( x + K ) e. ZZ ) |
57 |
|
zmodfzo |
|- ( ( ( x + K ) e. ZZ /\ N e. NN ) -> ( ( x + K ) mod N ) e. ( 0 ..^ N ) ) |
58 |
56 31 57
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> ( ( x + K ) mod N ) e. ( 0 ..^ N ) ) |
59 |
58 1
|
eleqtrrdi |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> ( ( x + K ) mod N ) e. I ) |
60 |
44 59
|
opelxpd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> <. 1 , ( ( x + K ) mod N ) >. e. ( { 0 , 1 } X. I ) ) |
61 |
45 60
|
prssd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } C_ ( { 0 , 1 } X. I ) ) |
62 |
51 61
|
elpwd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } e. ~P ( { 0 , 1 } X. I ) ) |
63 |
|
eleq1 |
|- ( Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } -> ( Y e. ~P ( { 0 , 1 } X. I ) <-> { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } e. ~P ( { 0 , 1 } X. I ) ) ) |
64 |
62 63
|
syl5ibrcom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> ( Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } -> Y e. ~P ( { 0 , 1 } X. I ) ) ) |
65 |
39 49 64
|
3jaod |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ x e. I ) -> ( ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) -> Y e. ~P ( { 0 , 1 } X. I ) ) ) |
66 |
65
|
rexlimdva |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) -> Y e. ~P ( { 0 , 1 } X. I ) ) ) |
67 |
66
|
pm4.71rd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( Y e. ~P ( { 0 , 1 } X. I ) /\ E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) ) |
68 |
18 67
|
bitr4id |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Y e. { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } <-> E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
69 |
12 68
|
bitrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Y e. E <-> E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |