| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgvtxel.i |
|- I = ( 0 ..^ N ) |
| 2 |
|
gpgvtxel.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
| 3 |
|
prex |
|- { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } e. _V |
| 4 |
3
|
a1i |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } e. _V ) |
| 5 |
|
c0ex |
|- 0 e. _V |
| 6 |
5
|
prid1 |
|- 0 e. { 0 , 1 } |
| 7 |
6
|
a1i |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> 0 e. { 0 , 1 } ) |
| 8 |
|
simpr |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> x e. I ) |
| 9 |
7 8
|
opelxpd |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> <. 0 , x >. e. ( { 0 , 1 } X. I ) ) |
| 10 |
|
elfzoelz |
|- ( x e. ( 0 ..^ N ) -> x e. ZZ ) |
| 11 |
10 1
|
eleq2s |
|- ( x e. I -> x e. ZZ ) |
| 12 |
11
|
adantl |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> x e. ZZ ) |
| 13 |
12
|
peano2zd |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> ( x + 1 ) e. ZZ ) |
| 14 |
|
simpll |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> N e. NN ) |
| 15 |
|
zmodfzo |
|- ( ( ( x + 1 ) e. ZZ /\ N e. NN ) -> ( ( x + 1 ) mod N ) e. ( 0 ..^ N ) ) |
| 16 |
13 14 15
|
syl2anc |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> ( ( x + 1 ) mod N ) e. ( 0 ..^ N ) ) |
| 17 |
16 1
|
eleqtrrdi |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> ( ( x + 1 ) mod N ) e. I ) |
| 18 |
7 17
|
opelxpd |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> <. 0 , ( ( x + 1 ) mod N ) >. e. ( { 0 , 1 } X. I ) ) |
| 19 |
9 18
|
prssd |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } C_ ( { 0 , 1 } X. I ) ) |
| 20 |
4 19
|
elpwd |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } e. ~P ( { 0 , 1 } X. I ) ) |
| 21 |
|
eleq1 |
|- ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } -> ( Y e. ~P ( { 0 , 1 } X. I ) <-> { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } e. ~P ( { 0 , 1 } X. I ) ) ) |
| 22 |
20 21
|
syl5ibrcom |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } -> Y e. ~P ( { 0 , 1 } X. I ) ) ) |
| 23 |
|
prex |
|- { <. 0 , x >. , <. 1 , x >. } e. _V |
| 24 |
23
|
a1i |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> { <. 0 , x >. , <. 1 , x >. } e. _V ) |
| 25 |
|
1ex |
|- 1 e. _V |
| 26 |
25
|
prid2 |
|- 1 e. { 0 , 1 } |
| 27 |
26
|
a1i |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> 1 e. { 0 , 1 } ) |
| 28 |
27 8
|
opelxpd |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> <. 1 , x >. e. ( { 0 , 1 } X. I ) ) |
| 29 |
9 28
|
prssd |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> { <. 0 , x >. , <. 1 , x >. } C_ ( { 0 , 1 } X. I ) ) |
| 30 |
24 29
|
elpwd |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> { <. 0 , x >. , <. 1 , x >. } e. ~P ( { 0 , 1 } X. I ) ) |
| 31 |
|
eleq1 |
|- ( Y = { <. 0 , x >. , <. 1 , x >. } -> ( Y e. ~P ( { 0 , 1 } X. I ) <-> { <. 0 , x >. , <. 1 , x >. } e. ~P ( { 0 , 1 } X. I ) ) ) |
| 32 |
30 31
|
syl5ibrcom |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> ( Y = { <. 0 , x >. , <. 1 , x >. } -> Y e. ~P ( { 0 , 1 } X. I ) ) ) |
| 33 |
|
prex |
|- { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } e. _V |
| 34 |
33
|
a1i |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } e. _V ) |
| 35 |
|
elfzoelz |
|- ( K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) -> K e. ZZ ) |
| 36 |
35 2
|
eleq2s |
|- ( K e. J -> K e. ZZ ) |
| 37 |
36
|
ad2antlr |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> K e. ZZ ) |
| 38 |
12 37
|
zaddcld |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> ( x + K ) e. ZZ ) |
| 39 |
|
zmodfzo |
|- ( ( ( x + K ) e. ZZ /\ N e. NN ) -> ( ( x + K ) mod N ) e. ( 0 ..^ N ) ) |
| 40 |
38 14 39
|
syl2anc |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> ( ( x + K ) mod N ) e. ( 0 ..^ N ) ) |
| 41 |
40 1
|
eleqtrrdi |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> ( ( x + K ) mod N ) e. I ) |
| 42 |
27 41
|
opelxpd |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> <. 1 , ( ( x + K ) mod N ) >. e. ( { 0 , 1 } X. I ) ) |
| 43 |
28 42
|
prssd |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } C_ ( { 0 , 1 } X. I ) ) |
| 44 |
34 43
|
elpwd |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } e. ~P ( { 0 , 1 } X. I ) ) |
| 45 |
|
eleq1 |
|- ( Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } -> ( Y e. ~P ( { 0 , 1 } X. I ) <-> { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } e. ~P ( { 0 , 1 } X. I ) ) ) |
| 46 |
44 45
|
syl5ibrcom |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> ( Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } -> Y e. ~P ( { 0 , 1 } X. I ) ) ) |
| 47 |
22 32 46
|
3jaod |
|- ( ( ( N e. NN /\ K e. J ) /\ x e. I ) -> ( ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) -> Y e. ~P ( { 0 , 1 } X. I ) ) ) |
| 48 |
47
|
rexlimdva |
|- ( ( N e. NN /\ K e. J ) -> ( E. x e. I ( Y = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ Y = { <. 0 , x >. , <. 1 , x >. } \/ Y = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) -> Y e. ~P ( { 0 , 1 } X. I ) ) ) |