Metamath Proof Explorer


Theorem gpgedgel

Description: An edge in a generalized Petersen graph G . (Contributed by AV, 29-Aug-2025) (Proof shortened by AV, 8-Nov-2025)

Ref Expression
Hypotheses gpgvtxel.i I = 0 ..^ N
gpgvtxel.j J = 1 ..^ N 2
gpgvtxel.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpgedgel.e E = Edg G
Assertion gpgedgel N 3 K J Y E x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N

Proof

Step Hyp Ref Expression
1 gpgvtxel.i I = 0 ..^ N
2 gpgvtxel.j J = 1 ..^ N 2
3 gpgvtxel.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
4 gpgedgel.e E = Edg G
5 3 fveq2i Could not format ( Edg ` G ) = ( Edg ` ( N gPetersenGr K ) ) : No typesetting found for |- ( Edg ` G ) = ( Edg ` ( N gPetersenGr K ) ) with typecode |-
6 4 5 eqtri Could not format E = ( Edg ` ( N gPetersenGr K ) ) : No typesetting found for |- E = ( Edg ` ( N gPetersenGr K ) ) with typecode |-
7 6 eleq2i Could not format ( Y e. E <-> Y e. ( Edg ` ( N gPetersenGr K ) ) ) : No typesetting found for |- ( Y e. E <-> Y e. ( Edg ` ( N gPetersenGr K ) ) ) with typecode |-
8 eluzge3nn N 3 N
9 2 1 gpgedg Could not format ( ( N e. NN /\ K e. J ) -> ( Edg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( Edg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) with typecode |-
10 8 9 sylan Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Edg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Edg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) with typecode |-
11 10 eleq2d Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Y e. ( Edg ` ( N gPetersenGr K ) ) <-> Y e. { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Y e. ( Edg ` ( N gPetersenGr K ) ) <-> Y e. { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) with typecode |-
12 7 11 bitrid N 3 K J Y E Y e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
13 eqeq1 e = Y e = 0 x 0 x + 1 mod N Y = 0 x 0 x + 1 mod N
14 eqeq1 e = Y e = 0 x 1 x Y = 0 x 1 x
15 eqeq1 e = Y e = 1 x 1 x + K mod N Y = 1 x 1 x + K mod N
16 13 14 15 3orbi123d e = Y e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N
17 16 rexbidv e = Y x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N
18 17 elrab Y e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N Y 𝒫 0 1 × I x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N
19 8 anim1i N 3 K J N K J
20 1 2 gpgiedgdmellem N K J x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N Y 𝒫 0 1 × I
21 19 20 syl N 3 K J x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N Y 𝒫 0 1 × I
22 21 pm4.71rd N 3 K J x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N Y 𝒫 0 1 × I x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N
23 18 22 bitr4id N 3 K J Y e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N
24 12 23 bitrd N 3 K J Y E x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N