Step |
Hyp |
Ref |
Expression |
1 |
|
gpgnbgr.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
2 |
|
gpgnbgr.g |
|- G = ( N gPetersenGr K ) |
3 |
|
gpgnbgr.v |
|- V = ( Vtx ` G ) |
4 |
|
gpgnbgr.u |
|- U = ( G NeighbVtx X ) |
5 |
4
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> U = ( G NeighbVtx X ) ) |
6 |
1
|
eleq2i |
|- ( K e. J <-> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
7 |
|
gpgusgra |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) |
8 |
6 7
|
sylan2b |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( N gPetersenGr K ) e. USGraph ) |
9 |
2 8
|
eqeltrid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> G e. USGraph ) |
10 |
|
simpl |
|- ( ( X e. V /\ ( 1st ` X ) = 0 ) -> X e. V ) |
11 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
12 |
3 11
|
nbusgrvtx |
|- ( ( G e. USGraph /\ X e. V ) -> ( G NeighbVtx X ) = { y e. V | { X , y } e. ( Edg ` G ) } ) |
13 |
9 10 12
|
syl2an |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( G NeighbVtx X ) = { y e. V | { X , y } e. ( Edg ` G ) } ) |
14 |
|
simpl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) ) |
15 |
|
simpr |
|- ( ( X e. V /\ ( 1st ` X ) = 0 ) -> ( 1st ` X ) = 0 ) |
16 |
15
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 1st ` X ) = 0 ) |
17 |
|
simpr |
|- ( ( v e. V /\ { X , v } e. ( Edg ` G ) ) -> { X , v } e. ( Edg ` G ) ) |
18 |
1 2 3 11
|
gpgvtxedg0 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ { X , v } e. ( Edg ` G ) ) -> ( v = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ v = <. 1 , ( 2nd ` X ) >. \/ v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) |
19 |
14 16 17 18
|
syl2an3an |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) /\ ( v e. V /\ { X , v } e. ( Edg ` G ) ) ) -> ( v = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ v = <. 1 , ( 2nd ` X ) >. \/ v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) |
20 |
19
|
ex |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( v e. V /\ { X , v } e. ( Edg ` G ) ) -> ( v = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ v = <. 1 , ( 2nd ` X ) >. \/ v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
21 |
1 2 3
|
gpgvtx0 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. V /\ <. 0 , ( 2nd ` X ) >. e. V /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. V ) ) |
22 |
21
|
simp1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. V ) |
23 |
22
|
adantrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. V ) |
24 |
1 2 3 11
|
gpgedgvtx0 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( { X , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. ( Edg ` G ) /\ { X , <. 1 , ( 2nd ` X ) >. } e. ( Edg ` G ) /\ { X , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. ( Edg ` G ) ) ) |
25 |
24
|
simp1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { X , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. ( Edg ` G ) ) |
26 |
23 25
|
jca |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. V /\ { X , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. ( Edg ` G ) ) ) |
27 |
|
eleq1 |
|- ( v = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( v e. V <-> <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. V ) ) |
28 |
|
preq2 |
|- ( v = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> { X , v } = { X , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } ) |
29 |
28
|
eleq1d |
|- ( v = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( { X , v } e. ( Edg ` G ) <-> { X , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. ( Edg ` G ) ) ) |
30 |
27 29
|
anbi12d |
|- ( v = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( ( v e. V /\ { X , v } e. ( Edg ` G ) ) <-> ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. V /\ { X , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. ( Edg ` G ) ) ) ) |
31 |
26 30
|
syl5ibrcom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( v = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( v e. V /\ { X , v } e. ( Edg ` G ) ) ) ) |
32 |
1 2 3
|
gpgvtx1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> ( <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. e. V /\ <. 1 , ( 2nd ` X ) >. e. V /\ <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. e. V ) ) |
33 |
32
|
simp2d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> <. 1 , ( 2nd ` X ) >. e. V ) |
34 |
33
|
adantrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> <. 1 , ( 2nd ` X ) >. e. V ) |
35 |
24
|
simp2d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { X , <. 1 , ( 2nd ` X ) >. } e. ( Edg ` G ) ) |
36 |
34 35
|
jca |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( <. 1 , ( 2nd ` X ) >. e. V /\ { X , <. 1 , ( 2nd ` X ) >. } e. ( Edg ` G ) ) ) |
37 |
|
eleq1 |
|- ( v = <. 1 , ( 2nd ` X ) >. -> ( v e. V <-> <. 1 , ( 2nd ` X ) >. e. V ) ) |
38 |
|
preq2 |
|- ( v = <. 1 , ( 2nd ` X ) >. -> { X , v } = { X , <. 1 , ( 2nd ` X ) >. } ) |
39 |
38
|
eleq1d |
|- ( v = <. 1 , ( 2nd ` X ) >. -> ( { X , v } e. ( Edg ` G ) <-> { X , <. 1 , ( 2nd ` X ) >. } e. ( Edg ` G ) ) ) |
40 |
37 39
|
anbi12d |
|- ( v = <. 1 , ( 2nd ` X ) >. -> ( ( v e. V /\ { X , v } e. ( Edg ` G ) ) <-> ( <. 1 , ( 2nd ` X ) >. e. V /\ { X , <. 1 , ( 2nd ` X ) >. } e. ( Edg ` G ) ) ) ) |
41 |
36 40
|
syl5ibrcom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( v = <. 1 , ( 2nd ` X ) >. -> ( v e. V /\ { X , v } e. ( Edg ` G ) ) ) ) |
42 |
21
|
simp3d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. V ) |
43 |
42
|
adantrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. V ) |
44 |
43
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) /\ v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) -> <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. V ) |
45 |
|
eleq1 |
|- ( v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( v e. V <-> <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. V ) ) |
46 |
45
|
adantl |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) /\ v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) -> ( v e. V <-> <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. V ) ) |
47 |
44 46
|
mpbird |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) /\ v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) -> v e. V ) |
48 |
24
|
simp3d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { X , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. ( Edg ` G ) ) |
49 |
48
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) /\ v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) -> { X , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. ( Edg ` G ) ) |
50 |
|
preq2 |
|- ( v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> { X , v } = { X , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |
51 |
50
|
eleq1d |
|- ( v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( { X , v } e. ( Edg ` G ) <-> { X , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. ( Edg ` G ) ) ) |
52 |
51
|
adantl |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) /\ v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) -> ( { X , v } e. ( Edg ` G ) <-> { X , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. ( Edg ` G ) ) ) |
53 |
49 52
|
mpbird |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) /\ v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) -> { X , v } e. ( Edg ` G ) ) |
54 |
47 53
|
jca |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) /\ v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) -> ( v e. V /\ { X , v } e. ( Edg ` G ) ) ) |
55 |
54
|
ex |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( v e. V /\ { X , v } e. ( Edg ` G ) ) ) ) |
56 |
31 41 55
|
3jaod |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( v = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ v = <. 1 , ( 2nd ` X ) >. \/ v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) -> ( v e. V /\ { X , v } e. ( Edg ` G ) ) ) ) |
57 |
20 56
|
impbid |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( v e. V /\ { X , v } e. ( Edg ` G ) ) <-> ( v = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ v = <. 1 , ( 2nd ` X ) >. \/ v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
58 |
|
preq2 |
|- ( y = v -> { X , y } = { X , v } ) |
59 |
58
|
eleq1d |
|- ( y = v -> ( { X , y } e. ( Edg ` G ) <-> { X , v } e. ( Edg ` G ) ) ) |
60 |
59
|
elrab |
|- ( v e. { y e. V | { X , y } e. ( Edg ` G ) } <-> ( v e. V /\ { X , v } e. ( Edg ` G ) ) ) |
61 |
|
vex |
|- v e. _V |
62 |
61
|
eltp |
|- ( v e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } <-> ( v = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ v = <. 1 , ( 2nd ` X ) >. \/ v = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) |
63 |
57 60 62
|
3bitr4g |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( v e. { y e. V | { X , y } e. ( Edg ` G ) } <-> v e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) ) |
64 |
63
|
eqrdv |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { y e. V | { X , y } e. ( Edg ` G ) } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |
65 |
5 13 64
|
3eqtrd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> U = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |