| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgedgvtx0.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
| 2 |
|
gpgedgvtx0.g |
|- G = ( N gPetersenGr K ) |
| 3 |
|
gpgedgvtx0.v |
|- V = ( Vtx ` G ) |
| 4 |
|
gpgedgvtx0.e |
|- E = ( Edg ` G ) |
| 5 |
|
gpgusgra |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) |
| 6 |
1
|
eleq2i |
|- ( K e. J <-> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
| 7 |
6
|
anbi2i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) <-> ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) ) |
| 8 |
2
|
eleq1i |
|- ( G e. USGraph <-> ( N gPetersenGr K ) e. USGraph ) |
| 9 |
5 7 8
|
3imtr4i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> G e. USGraph ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ { X , Y } e. E ) -> G e. USGraph ) |
| 11 |
|
simp3 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ { X , Y } e. E ) -> { X , Y } e. E ) |
| 12 |
4 3
|
usgrpredgv |
|- ( ( G e. USGraph /\ { X , Y } e. E ) -> ( X e. V /\ Y e. V ) ) |
| 13 |
10 11 12
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ { X , Y } e. E ) -> ( X e. V /\ Y e. V ) ) |
| 14 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
| 15 |
14 1 2 4
|
gpgedgel |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( { X , Y } e. E <-> E. y e. ( 0 ..^ N ) ( { X , Y } = { <. 0 , y >. , <. 0 , ( ( y + 1 ) mod N ) >. } \/ { X , Y } = { <. 0 , y >. , <. 1 , y >. } \/ { X , Y } = { <. 1 , y >. , <. 1 , ( ( y + K ) mod N ) >. } ) ) ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) -> ( { X , Y } e. E <-> E. y e. ( 0 ..^ N ) ( { X , Y } = { <. 0 , y >. , <. 0 , ( ( y + 1 ) mod N ) >. } \/ { X , Y } = { <. 0 , y >. , <. 1 , y >. } \/ { X , Y } = { <. 1 , y >. , <. 1 , ( ( y + K ) mod N ) >. } ) ) ) |
| 17 |
|
simp3 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) -> ( X e. V /\ Y e. V ) ) |
| 18 |
17
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( X e. V /\ Y e. V ) ) |
| 19 |
|
opex |
|- <. 0 , y >. e. _V |
| 20 |
|
opex |
|- <. 0 , ( ( y + 1 ) mod N ) >. e. _V |
| 21 |
19 20
|
pm3.2i |
|- ( <. 0 , y >. e. _V /\ <. 0 , ( ( y + 1 ) mod N ) >. e. _V ) |
| 22 |
|
preq12bg |
|- ( ( ( X e. V /\ Y e. V ) /\ ( <. 0 , y >. e. _V /\ <. 0 , ( ( y + 1 ) mod N ) >. e. _V ) ) -> ( { X , Y } = { <. 0 , y >. , <. 0 , ( ( y + 1 ) mod N ) >. } <-> ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) \/ ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) ) ) ) |
| 23 |
18 21 22
|
sylancl |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( { X , Y } = { <. 0 , y >. , <. 0 , ( ( y + 1 ) mod N ) >. } <-> ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) \/ ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) ) ) ) |
| 24 |
|
simpr |
|- ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) -> Y = <. 0 , ( ( y + 1 ) mod N ) >. ) |
| 25 |
|
c0ex |
|- 0 e. _V |
| 26 |
|
vex |
|- y e. _V |
| 27 |
25 26
|
op2ndd |
|- ( X = <. 0 , y >. -> ( 2nd ` X ) = y ) |
| 28 |
27
|
eqcomd |
|- ( X = <. 0 , y >. -> y = ( 2nd ` X ) ) |
| 29 |
28
|
oveq1d |
|- ( X = <. 0 , y >. -> ( y + 1 ) = ( ( 2nd ` X ) + 1 ) ) |
| 30 |
29
|
oveq1d |
|- ( X = <. 0 , y >. -> ( ( y + 1 ) mod N ) = ( ( ( 2nd ` X ) + 1 ) mod N ) ) |
| 31 |
30
|
adantr |
|- ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) -> ( ( y + 1 ) mod N ) = ( ( ( 2nd ` X ) + 1 ) mod N ) ) |
| 32 |
31
|
opeq2d |
|- ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) -> <. 0 , ( ( y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) |
| 33 |
24 32
|
eqtrd |
|- ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) -> Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) |
| 34 |
33
|
3mix1d |
|- ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) |
| 35 |
34
|
a1i |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 36 |
|
elfzoelz |
|- ( y e. ( 0 ..^ N ) -> y e. ZZ ) |
| 37 |
36
|
zred |
|- ( y e. ( 0 ..^ N ) -> y e. RR ) |
| 38 |
|
1red |
|- ( y e. ( 0 ..^ N ) -> 1 e. RR ) |
| 39 |
37 38
|
readdcld |
|- ( y e. ( 0 ..^ N ) -> ( y + 1 ) e. RR ) |
| 40 |
|
elfzo0 |
|- ( y e. ( 0 ..^ N ) <-> ( y e. NN0 /\ N e. NN /\ y < N ) ) |
| 41 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 42 |
41
|
3ad2ant2 |
|- ( ( y e. NN0 /\ N e. NN /\ y < N ) -> N e. RR+ ) |
| 43 |
40 42
|
sylbi |
|- ( y e. ( 0 ..^ N ) -> N e. RR+ ) |
| 44 |
|
modsubmod |
|- ( ( ( y + 1 ) e. RR /\ 1 e. RR /\ N e. RR+ ) -> ( ( ( ( y + 1 ) mod N ) - 1 ) mod N ) = ( ( ( y + 1 ) - 1 ) mod N ) ) |
| 45 |
39 38 43 44
|
syl3anc |
|- ( y e. ( 0 ..^ N ) -> ( ( ( ( y + 1 ) mod N ) - 1 ) mod N ) = ( ( ( y + 1 ) - 1 ) mod N ) ) |
| 46 |
36
|
zcnd |
|- ( y e. ( 0 ..^ N ) -> y e. CC ) |
| 47 |
|
pncan1 |
|- ( y e. CC -> ( ( y + 1 ) - 1 ) = y ) |
| 48 |
46 47
|
syl |
|- ( y e. ( 0 ..^ N ) -> ( ( y + 1 ) - 1 ) = y ) |
| 49 |
48
|
oveq1d |
|- ( y e. ( 0 ..^ N ) -> ( ( ( y + 1 ) - 1 ) mod N ) = ( y mod N ) ) |
| 50 |
|
zmodidfzoimp |
|- ( y e. ( 0 ..^ N ) -> ( y mod N ) = y ) |
| 51 |
45 49 50
|
3eqtrrd |
|- ( y e. ( 0 ..^ N ) -> y = ( ( ( ( y + 1 ) mod N ) - 1 ) mod N ) ) |
| 52 |
51
|
adantl |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> y = ( ( ( ( y + 1 ) mod N ) - 1 ) mod N ) ) |
| 53 |
52
|
adantr |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) /\ ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) ) -> y = ( ( ( ( y + 1 ) mod N ) - 1 ) mod N ) ) |
| 54 |
53
|
opeq2d |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) /\ ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) ) -> <. 0 , y >. = <. 0 , ( ( ( ( y + 1 ) mod N ) - 1 ) mod N ) >. ) |
| 55 |
|
simpr |
|- ( ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) -> Y = <. 0 , y >. ) |
| 56 |
|
ovex |
|- ( ( y + 1 ) mod N ) e. _V |
| 57 |
25 56
|
op2ndd |
|- ( X = <. 0 , ( ( y + 1 ) mod N ) >. -> ( 2nd ` X ) = ( ( y + 1 ) mod N ) ) |
| 58 |
57
|
oveq1d |
|- ( X = <. 0 , ( ( y + 1 ) mod N ) >. -> ( ( 2nd ` X ) - 1 ) = ( ( ( y + 1 ) mod N ) - 1 ) ) |
| 59 |
58
|
oveq1d |
|- ( X = <. 0 , ( ( y + 1 ) mod N ) >. -> ( ( ( 2nd ` X ) - 1 ) mod N ) = ( ( ( ( y + 1 ) mod N ) - 1 ) mod N ) ) |
| 60 |
59
|
opeq2d |
|- ( X = <. 0 , ( ( y + 1 ) mod N ) >. -> <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( ( ( y + 1 ) mod N ) - 1 ) mod N ) >. ) |
| 61 |
60
|
adantr |
|- ( ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) -> <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( ( ( y + 1 ) mod N ) - 1 ) mod N ) >. ) |
| 62 |
55 61
|
eqeq12d |
|- ( ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. <-> <. 0 , y >. = <. 0 , ( ( ( ( y + 1 ) mod N ) - 1 ) mod N ) >. ) ) |
| 63 |
62
|
adantl |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) /\ ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. <-> <. 0 , y >. = <. 0 , ( ( ( ( y + 1 ) mod N ) - 1 ) mod N ) >. ) ) |
| 64 |
54 63
|
mpbird |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) /\ ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) ) -> Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) |
| 65 |
64
|
3mix3d |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) /\ ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) |
| 66 |
65
|
ex |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 67 |
35 66
|
jaod |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( X = <. 0 , y >. /\ Y = <. 0 , ( ( y + 1 ) mod N ) >. ) \/ ( X = <. 0 , ( ( y + 1 ) mod N ) >. /\ Y = <. 0 , y >. ) ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 68 |
23 67
|
sylbid |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( { X , Y } = { <. 0 , y >. , <. 0 , ( ( y + 1 ) mod N ) >. } -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 69 |
|
opex |
|- <. 1 , y >. e. _V |
| 70 |
19 69
|
pm3.2i |
|- ( <. 0 , y >. e. _V /\ <. 1 , y >. e. _V ) |
| 71 |
|
preq12bg |
|- ( ( ( X e. V /\ Y e. V ) /\ ( <. 0 , y >. e. _V /\ <. 1 , y >. e. _V ) ) -> ( { X , Y } = { <. 0 , y >. , <. 1 , y >. } <-> ( ( X = <. 0 , y >. /\ Y = <. 1 , y >. ) \/ ( X = <. 1 , y >. /\ Y = <. 0 , y >. ) ) ) ) |
| 72 |
18 70 71
|
sylancl |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( { X , Y } = { <. 0 , y >. , <. 1 , y >. } <-> ( ( X = <. 0 , y >. /\ Y = <. 1 , y >. ) \/ ( X = <. 1 , y >. /\ Y = <. 0 , y >. ) ) ) ) |
| 73 |
|
simpr |
|- ( ( X = <. 0 , y >. /\ Y = <. 1 , y >. ) -> Y = <. 1 , y >. ) |
| 74 |
28
|
adantr |
|- ( ( X = <. 0 , y >. /\ Y = <. 1 , y >. ) -> y = ( 2nd ` X ) ) |
| 75 |
74
|
opeq2d |
|- ( ( X = <. 0 , y >. /\ Y = <. 1 , y >. ) -> <. 1 , y >. = <. 1 , ( 2nd ` X ) >. ) |
| 76 |
73 75
|
eqtrd |
|- ( ( X = <. 0 , y >. /\ Y = <. 1 , y >. ) -> Y = <. 1 , ( 2nd ` X ) >. ) |
| 77 |
76
|
adantl |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) /\ ( X = <. 0 , y >. /\ Y = <. 1 , y >. ) ) -> Y = <. 1 , ( 2nd ` X ) >. ) |
| 78 |
77
|
3mix2d |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) /\ ( X = <. 0 , y >. /\ Y = <. 1 , y >. ) ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) |
| 79 |
78
|
ex |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( X = <. 0 , y >. /\ Y = <. 1 , y >. ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 80 |
|
1ex |
|- 1 e. _V |
| 81 |
80 26
|
op1std |
|- ( X = <. 1 , y >. -> ( 1st ` X ) = 1 ) |
| 82 |
81
|
eqeq1d |
|- ( X = <. 1 , y >. -> ( ( 1st ` X ) = 0 <-> 1 = 0 ) ) |
| 83 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 84 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> ( Y = <. 0 , y >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 85 |
84
|
com12 |
|- ( 1 =/= 0 -> ( 1 = 0 -> ( Y = <. 0 , y >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 86 |
83 85
|
mp1i |
|- ( X = <. 1 , y >. -> ( 1 = 0 -> ( Y = <. 0 , y >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 87 |
82 86
|
sylbid |
|- ( X = <. 1 , y >. -> ( ( 1st ` X ) = 0 -> ( Y = <. 0 , y >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 88 |
87
|
com12 |
|- ( ( 1st ` X ) = 0 -> ( X = <. 1 , y >. -> ( Y = <. 0 , y >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 89 |
88
|
3ad2ant2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) -> ( X = <. 1 , y >. -> ( Y = <. 0 , y >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 90 |
89
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( X = <. 1 , y >. -> ( Y = <. 0 , y >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 91 |
90
|
impd |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( X = <. 1 , y >. /\ Y = <. 0 , y >. ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 92 |
79 91
|
jaod |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( X = <. 0 , y >. /\ Y = <. 1 , y >. ) \/ ( X = <. 1 , y >. /\ Y = <. 0 , y >. ) ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 93 |
72 92
|
sylbid |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( { X , Y } = { <. 0 , y >. , <. 1 , y >. } -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 94 |
|
opex |
|- <. 1 , ( ( y + K ) mod N ) >. e. _V |
| 95 |
69 94
|
pm3.2i |
|- ( <. 1 , y >. e. _V /\ <. 1 , ( ( y + K ) mod N ) >. e. _V ) |
| 96 |
|
preq12bg |
|- ( ( ( X e. V /\ Y e. V ) /\ ( <. 1 , y >. e. _V /\ <. 1 , ( ( y + K ) mod N ) >. e. _V ) ) -> ( { X , Y } = { <. 1 , y >. , <. 1 , ( ( y + K ) mod N ) >. } <-> ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) \/ ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) ) ) ) |
| 97 |
18 95 96
|
sylancl |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( { X , Y } = { <. 1 , y >. , <. 1 , ( ( y + K ) mod N ) >. } <-> ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) \/ ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) ) ) ) |
| 98 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> ( Y = <. 1 , ( ( y + K ) mod N ) >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 99 |
98
|
com12 |
|- ( 1 =/= 0 -> ( 1 = 0 -> ( Y = <. 1 , ( ( y + K ) mod N ) >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 100 |
83 99
|
mp1i |
|- ( X = <. 1 , y >. -> ( 1 = 0 -> ( Y = <. 1 , ( ( y + K ) mod N ) >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 101 |
82 100
|
sylbid |
|- ( X = <. 1 , y >. -> ( ( 1st ` X ) = 0 -> ( Y = <. 1 , ( ( y + K ) mod N ) >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 102 |
101
|
com12 |
|- ( ( 1st ` X ) = 0 -> ( X = <. 1 , y >. -> ( Y = <. 1 , ( ( y + K ) mod N ) >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 103 |
102
|
impd |
|- ( ( 1st ` X ) = 0 -> ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 104 |
|
ovex |
|- ( ( y + K ) mod N ) e. _V |
| 105 |
80 104
|
op1std |
|- ( X = <. 1 , ( ( y + K ) mod N ) >. -> ( 1st ` X ) = 1 ) |
| 106 |
105
|
eqeq1d |
|- ( X = <. 1 , ( ( y + K ) mod N ) >. -> ( ( 1st ` X ) = 0 <-> 1 = 0 ) ) |
| 107 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> ( Y = <. 1 , y >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 108 |
107
|
com12 |
|- ( 1 =/= 0 -> ( 1 = 0 -> ( Y = <. 1 , y >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 109 |
83 108
|
mp1i |
|- ( X = <. 1 , ( ( y + K ) mod N ) >. -> ( 1 = 0 -> ( Y = <. 1 , y >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 110 |
106 109
|
sylbid |
|- ( X = <. 1 , ( ( y + K ) mod N ) >. -> ( ( 1st ` X ) = 0 -> ( Y = <. 1 , y >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 111 |
110
|
com12 |
|- ( ( 1st ` X ) = 0 -> ( X = <. 1 , ( ( y + K ) mod N ) >. -> ( Y = <. 1 , y >. -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) |
| 112 |
111
|
impd |
|- ( ( 1st ` X ) = 0 -> ( ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 113 |
103 112
|
jaod |
|- ( ( 1st ` X ) = 0 -> ( ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) \/ ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 114 |
113
|
3ad2ant2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) -> ( ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) \/ ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 115 |
114
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( X = <. 1 , y >. /\ Y = <. 1 , ( ( y + K ) mod N ) >. ) \/ ( X = <. 1 , ( ( y + K ) mod N ) >. /\ Y = <. 1 , y >. ) ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 116 |
97 115
|
sylbid |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( { X , Y } = { <. 1 , y >. , <. 1 , ( ( y + K ) mod N ) >. } -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 117 |
68 93 116
|
3jaod |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( { X , Y } = { <. 0 , y >. , <. 0 , ( ( y + 1 ) mod N ) >. } \/ { X , Y } = { <. 0 , y >. , <. 1 , y >. } \/ { X , Y } = { <. 1 , y >. , <. 1 , ( ( y + K ) mod N ) >. } ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 118 |
117
|
rexlimdva |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) -> ( E. y e. ( 0 ..^ N ) ( { X , Y } = { <. 0 , y >. , <. 0 , ( ( y + 1 ) mod N ) >. } \/ { X , Y } = { <. 0 , y >. , <. 1 , y >. } \/ { X , Y } = { <. 1 , y >. , <. 1 , ( ( y + K ) mod N ) >. } ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 119 |
16 118
|
sylbid |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ ( X e. V /\ Y e. V ) ) -> ( { X , Y } e. E -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 120 |
119
|
3exp |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( ( 1st ` X ) = 0 -> ( ( X e. V /\ Y e. V ) -> ( { X , Y } e. E -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) ) |
| 121 |
120
|
com34 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( ( 1st ` X ) = 0 -> ( { X , Y } e. E -> ( ( X e. V /\ Y e. V ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) ) ) |
| 122 |
121
|
3imp |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ { X , Y } e. E ) -> ( ( X e. V /\ Y e. V ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) ) |
| 123 |
13 122
|
mpd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` X ) = 0 /\ { X , Y } e. E ) -> ( Y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. \/ Y = <. 1 , ( 2nd ` X ) >. \/ Y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) |