Metamath Proof Explorer


Theorem gpg3nbgrvtx0

Description: In a generalized Petersen graph G , every vertex of the first kind has exactly three (different) neighbors. (Contributed by AV, 30-Aug-2025)

Ref Expression
Hypotheses gpgnbgr.j J = 1 ..^ N 2
gpgnbgr.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpgnbgr.v V = Vtx G
gpgnbgr.u U = G NeighbVtx X
Assertion gpg3nbgrvtx0 N 3 K J X V 1 st X = 0 U = 3

Proof

Step Hyp Ref Expression
1 gpgnbgr.j J = 1 ..^ N 2
2 gpgnbgr.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
3 gpgnbgr.v V = Vtx G
4 gpgnbgr.u U = G NeighbVtx X
5 1 2 3 4 gpgnbgrvtx0 N 3 K J X V 1 st X = 0 U = 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N
6 5 fveq2d N 3 K J X V 1 st X = 0 U = 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N
7 0ne1 0 1
8 7 a1i N 3 K J X V 1 st X = 0 0 1
9 8 orcd N 3 K J X V 1 st X = 0 0 1 2 nd X + 1 mod N 2 nd X
10 c0ex 0 V
11 ovex 2 nd X + 1 mod N V
12 10 11 opthne 0 2 nd X + 1 mod N 1 2 nd X 0 1 2 nd X + 1 mod N 2 nd X
13 9 12 sylibr N 3 K J X V 1 st X = 0 0 2 nd X + 1 mod N 1 2 nd X
14 ax-1ne0 1 0
15 14 a1i N 3 K J X V 1 st X = 0 1 0
16 15 orcd N 3 K J X V 1 st X = 0 1 0 2 nd X 2 nd X 1 mod N
17 1ex 1 V
18 fvex 2 nd X V
19 17 18 opthne 1 2 nd X 0 2 nd X 1 mod N 1 0 2 nd X 2 nd X 1 mod N
20 16 19 sylibr N 3 K J X V 1 st X = 0 1 2 nd X 0 2 nd X 1 mod N
21 simpl X V 1 st X = 0 X V
22 21 anim2i N 3 K J X V 1 st X = 0 N 3 K J X V
23 eqid 0 ..^ N = 0 ..^ N
24 23 1 2 3 gpgvtxel2 N 3 K J X V 2 nd X 0 ..^ N
25 elfzoelz 2 nd X 0 ..^ N 2 nd X
26 22 24 25 3syl N 3 K J X V 1 st X = 0 2 nd X
27 26 zcnd N 3 K J X V 1 st X = 0 2 nd X
28 1cnd N 3 K J X V 1 st X = 0 1
29 2cnd N 3 K J X V 1 st X = 0 2
30 27 28 29 subadd23d N 3 K J X V 1 st X = 0 2 nd X - 1 + 2 = 2 nd X + 2 - 1
31 2m1e1 2 1 = 1
32 31 a1i N 3 K J X V 1 st X = 0 2 1 = 1
33 32 oveq2d N 3 K J X V 1 st X = 0 2 nd X + 2 - 1 = 2 nd X + 1
34 30 33 eqtrd N 3 K J X V 1 st X = 0 2 nd X - 1 + 2 = 2 nd X + 1
35 34 eqcomd N 3 K J X V 1 st X = 0 2 nd X + 1 = 2 nd X - 1 + 2
36 35 oveq1d N 3 K J X V 1 st X = 0 2 nd X + 1 mod N = 2 nd X - 1 + 2 mod N
37 1zzd N 3 K J X V 1 st X = 0 1
38 26 37 zsubcld N 3 K J X V 1 st X = 0 2 nd X 1
39 38 zred N 3 K J X V 1 st X = 0 2 nd X 1
40 2re 2
41 40 a1i N 3 K J X V 1 st X = 0 2
42 eluzge3nn N 3 N
43 42 nnrpd N 3 N +
44 43 ad2antrr N 3 K J X V 1 st X = 0 N +
45 modaddabs 2 nd X 1 2 N + 2 nd X 1 mod N + 2 mod N mod N = 2 nd X - 1 + 2 mod N
46 39 41 44 45 syl3anc N 3 K J X V 1 st X = 0 2 nd X 1 mod N + 2 mod N mod N = 2 nd X - 1 + 2 mod N
47 46 eqcomd N 3 K J X V 1 st X = 0 2 nd X - 1 + 2 mod N = 2 nd X 1 mod N + 2 mod N mod N
48 36 47 eqtrd N 3 K J X V 1 st X = 0 2 nd X + 1 mod N = 2 nd X 1 mod N + 2 mod N mod N
49 42 ad2antrr N 3 K J X V 1 st X = 0 N
50 38 49 zmodcld N 3 K J X V 1 st X = 0 2 nd X 1 mod N 0
51 modlt 2 nd X 1 N + 2 nd X 1 mod N < N
52 39 44 51 syl2anc N 3 K J X V 1 st X = 0 2 nd X 1 mod N < N
53 50 52 jca N 3 K J X V 1 st X = 0 2 nd X 1 mod N 0 2 nd X 1 mod N < N
54 2nn0 2 0
55 54 a1i N 3 2 0
56 eluz2 N 3 3 N 3 N
57 40 a1i N 3 N 2
58 3re 3
59 58 a1i N 3 N 3
60 zre N N
61 60 adantr N 3 N N
62 2lt3 2 < 3
63 62 a1i N 3 N 2 < 3
64 simpr N 3 N 3 N
65 57 59 61 63 64 ltletrd N 3 N 2 < N
66 65 3adant1 3 N 3 N 2 < N
67 56 66 sylbi N 3 2 < N
68 elfzo0 2 0 ..^ N 2 0 N 2 < N
69 55 42 67 68 syl3anbrc N 3 2 0 ..^ N
70 zmodidfzoimp 2 0 ..^ N 2 mod N = 2
71 69 70 syl N 3 2 mod N = 2
72 2nn 2
73 71 72 eqeltrdi N 3 2 mod N
74 40 a1i N 3 2
75 modlt 2 N + 2 mod N < N
76 74 43 75 syl2anc N 3 2 mod N < N
77 73 76 jca N 3 2 mod N 2 mod N < N
78 77 ad2antrr N 3 K J X V 1 st X = 0 2 mod N 2 mod N < N
79 addmodne N 2 nd X 1 mod N 0 2 nd X 1 mod N < N 2 mod N 2 mod N < N 2 nd X 1 mod N + 2 mod N mod N 2 nd X 1 mod N
80 49 53 78 79 syl3anc N 3 K J X V 1 st X = 0 2 nd X 1 mod N + 2 mod N mod N 2 nd X 1 mod N
81 48 80 eqnetrd N 3 K J X V 1 st X = 0 2 nd X + 1 mod N 2 nd X 1 mod N
82 81 necomd N 3 K J X V 1 st X = 0 2 nd X 1 mod N 2 nd X + 1 mod N
83 82 olcd N 3 K J X V 1 st X = 0 0 0 2 nd X 1 mod N 2 nd X + 1 mod N
84 ovex 2 nd X 1 mod N V
85 10 84 opthne 0 2 nd X 1 mod N 0 2 nd X + 1 mod N 0 0 2 nd X 1 mod N 2 nd X + 1 mod N
86 83 85 sylibr N 3 K J X V 1 st X = 0 0 2 nd X 1 mod N 0 2 nd X + 1 mod N
87 13 20 86 3jca N 3 K J X V 1 st X = 0 0 2 nd X + 1 mod N 1 2 nd X 1 2 nd X 0 2 nd X 1 mod N 0 2 nd X 1 mod N 0 2 nd X + 1 mod N
88 opex 0 2 nd X + 1 mod N V
89 opex 1 2 nd X V
90 opex 0 2 nd X 1 mod N V
91 hashtpg 0 2 nd X + 1 mod N V 1 2 nd X V 0 2 nd X 1 mod N V 0 2 nd X + 1 mod N 1 2 nd X 1 2 nd X 0 2 nd X 1 mod N 0 2 nd X 1 mod N 0 2 nd X + 1 mod N 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N = 3
92 88 89 90 91 mp3an 0 2 nd X + 1 mod N 1 2 nd X 1 2 nd X 0 2 nd X 1 mod N 0 2 nd X 1 mod N 0 2 nd X + 1 mod N 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N = 3
93 87 92 sylib N 3 K J X V 1 st X = 0 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N = 3
94 6 93 eqtrd N 3 K J X V 1 st X = 0 U = 3