Description: In a generalized Petersen graph G , every outside vertex has exactly three (different) neighbors. (Contributed by AV, 30-Aug-2025)
The proof of gpg3nbgrvtx0 can be shortened using lemma gpg3nbgrvtxlem , but then theorem 2ltceilhalf is required which is based on an "example" ex-ceil . If these theorems were moved to main, the "example" should also be moved up to become a full-fledged theorem. (Proof shortened by AV, 4-Sep-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gpgnbgr.j | |- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
|
| gpgnbgr.g | |- G = ( N gPetersenGr K ) |
||
| gpgnbgr.v | |- V = ( Vtx ` G ) |
||
| gpgnbgr.u | |- U = ( G NeighbVtx X ) |
||
| Assertion | gpg3nbgrvtx0ALT | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( # ` U ) = 3 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gpgnbgr.j | |- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
|
| 2 | gpgnbgr.g | |- G = ( N gPetersenGr K ) |
|
| 3 | gpgnbgr.v | |- V = ( Vtx ` G ) |
|
| 4 | gpgnbgr.u | |- U = ( G NeighbVtx X ) |
|
| 5 | 1 2 3 4 | gpgnbgrvtx0 | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> U = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |
| 6 | 5 | fveq2d | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( # ` U ) = ( # ` { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) ) |
| 7 | 0ne1 | |- 0 =/= 1 |
|
| 8 | 7 | a1i | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> 0 =/= 1 ) |
| 9 | 8 | orcd | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 0 =/= 1 \/ ( ( ( 2nd ` X ) + 1 ) mod N ) =/= ( 2nd ` X ) ) ) |
| 10 | c0ex | |- 0 e. _V |
|
| 11 | ovex | |- ( ( ( 2nd ` X ) + 1 ) mod N ) e. _V |
|
| 12 | 10 11 | opthne | |- ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. =/= <. 1 , ( 2nd ` X ) >. <-> ( 0 =/= 1 \/ ( ( ( 2nd ` X ) + 1 ) mod N ) =/= ( 2nd ` X ) ) ) |
| 13 | 9 12 | sylibr | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. =/= <. 1 , ( 2nd ` X ) >. ) |
| 14 | ax-1ne0 | |- 1 =/= 0 |
|
| 15 | 14 | a1i | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> 1 =/= 0 ) |
| 16 | 15 | orcd | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 1 =/= 0 \/ ( 2nd ` X ) =/= ( ( ( 2nd ` X ) - 1 ) mod N ) ) ) |
| 17 | 1ex | |- 1 e. _V |
|
| 18 | fvex | |- ( 2nd ` X ) e. _V |
|
| 19 | 17 18 | opthne | |- ( <. 1 , ( 2nd ` X ) >. =/= <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. <-> ( 1 =/= 0 \/ ( 2nd ` X ) =/= ( ( ( 2nd ` X ) - 1 ) mod N ) ) ) |
| 20 | 16 19 | sylibr | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> <. 1 , ( 2nd ` X ) >. =/= <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) |
| 21 | simpll | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> N e. ( ZZ>= ` 3 ) ) |
|
| 22 | 2z | |- 2 e. ZZ |
|
| 23 | 22 | a1i | |- ( N e. ( ZZ>= ` 3 ) -> 2 e. ZZ ) |
| 24 | eluzelre | |- ( N e. ( ZZ>= ` 3 ) -> N e. RR ) |
|
| 25 | 24 | rehalfcld | |- ( N e. ( ZZ>= ` 3 ) -> ( N / 2 ) e. RR ) |
| 26 | 25 | ceilcld | |- ( N e. ( ZZ>= ` 3 ) -> ( |^ ` ( N / 2 ) ) e. ZZ ) |
| 27 | 2ltceilhalf | |- ( N e. ( ZZ>= ` 3 ) -> 2 <_ ( |^ ` ( N / 2 ) ) ) |
|
| 28 | eluz2 | |- ( ( |^ ` ( N / 2 ) ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ( |^ ` ( N / 2 ) ) e. ZZ /\ 2 <_ ( |^ ` ( N / 2 ) ) ) ) |
|
| 29 | 23 26 27 28 | syl3anbrc | |- ( N e. ( ZZ>= ` 3 ) -> ( |^ ` ( N / 2 ) ) e. ( ZZ>= ` 2 ) ) |
| 30 | 29 | adantr | |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( |^ ` ( N / 2 ) ) e. ( ZZ>= ` 2 ) ) |
| 31 | 30 | adantr | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( |^ ` ( N / 2 ) ) e. ( ZZ>= ` 2 ) ) |
| 32 | fzo1lb | |- ( 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) <-> ( |^ ` ( N / 2 ) ) e. ( ZZ>= ` 2 ) ) |
|
| 33 | 31 32 | sylibr | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
| 34 | eqid | |- ( 0 ..^ N ) = ( 0 ..^ N ) |
|
| 35 | 34 1 2 3 | gpgvtxel2 | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> ( 2nd ` X ) e. ( 0 ..^ N ) ) |
| 36 | 35 | adantrr | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 2nd ` X ) e. ( 0 ..^ N ) ) |
| 37 | gpg3nbgrvtxlem | |- ( ( N e. ( ZZ>= ` 3 ) /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) /\ ( 2nd ` X ) e. ( 0 ..^ N ) ) -> ( ( ( 2nd ` X ) + 1 ) mod N ) =/= ( ( ( 2nd ` X ) - 1 ) mod N ) ) |
|
| 38 | 21 33 36 37 | syl3anc | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( ( 2nd ` X ) + 1 ) mod N ) =/= ( ( ( 2nd ` X ) - 1 ) mod N ) ) |
| 39 | 38 | necomd | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( ( 2nd ` X ) - 1 ) mod N ) =/= ( ( ( 2nd ` X ) + 1 ) mod N ) ) |
| 40 | 39 | olcd | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 0 =/= 0 \/ ( ( ( 2nd ` X ) - 1 ) mod N ) =/= ( ( ( 2nd ` X ) + 1 ) mod N ) ) ) |
| 41 | ovex | |- ( ( ( 2nd ` X ) - 1 ) mod N ) e. _V |
|
| 42 | 10 41 | opthne | |- ( <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. <-> ( 0 =/= 0 \/ ( ( ( 2nd ` X ) - 1 ) mod N ) =/= ( ( ( 2nd ` X ) + 1 ) mod N ) ) ) |
| 43 | 40 42 | sylibr | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) |
| 44 | 13 20 43 | 3jca | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. =/= <. 1 , ( 2nd ` X ) >. /\ <. 1 , ( 2nd ` X ) >. =/= <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) ) |
| 45 | opex | |- <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. _V |
|
| 46 | opex | |- <. 1 , ( 2nd ` X ) >. e. _V |
|
| 47 | opex | |- <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. _V |
|
| 48 | hashtpg | |- ( ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. _V /\ <. 1 , ( 2nd ` X ) >. e. _V /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. _V ) -> ( ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. =/= <. 1 , ( 2nd ` X ) >. /\ <. 1 , ( 2nd ` X ) >. =/= <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) <-> ( # ` { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) = 3 ) ) |
|
| 49 | 45 46 47 48 | mp3an | |- ( ( <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. =/= <. 1 , ( 2nd ` X ) >. /\ <. 1 , ( 2nd ` X ) >. =/= <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. /\ <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) <-> ( # ` { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) = 3 ) |
| 50 | 44 49 | sylib | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( # ` { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) = 3 ) |
| 51 | 6 50 | eqtrd | |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( # ` U ) = 3 ) |