Step |
Hyp |
Ref |
Expression |
1 |
|
gpgnbgr.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
2 |
|
gpgnbgr.g |
|- G = ( N gPetersenGr K ) |
3 |
|
gpgnbgr.v |
|- V = ( Vtx ` G ) |
4 |
|
gpgnbgr.u |
|- U = ( G NeighbVtx X ) |
5 |
1 2 3 4
|
gpgnbgrvtx1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> U = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } ) |
6 |
5
|
fveq2d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( # ` U ) = ( # ` { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } ) ) |
7 |
|
ax-1ne0 |
|- 1 =/= 0 |
8 |
7
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> 1 =/= 0 ) |
9 |
8
|
orcd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( 1 =/= 0 \/ ( ( ( 2nd ` X ) + K ) mod N ) =/= ( 2nd ` X ) ) ) |
10 |
|
1ex |
|- 1 e. _V |
11 |
|
ovex |
|- ( ( ( 2nd ` X ) + K ) mod N ) e. _V |
12 |
10 11
|
opthne |
|- ( <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. =/= <. 0 , ( 2nd ` X ) >. <-> ( 1 =/= 0 \/ ( ( ( 2nd ` X ) + K ) mod N ) =/= ( 2nd ` X ) ) ) |
13 |
9 12
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. =/= <. 0 , ( 2nd ` X ) >. ) |
14 |
|
0ne1 |
|- 0 =/= 1 |
15 |
14
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> 0 =/= 1 ) |
16 |
15
|
orcd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( 0 =/= 1 \/ ( 2nd ` X ) =/= ( ( ( 2nd ` X ) - K ) mod N ) ) ) |
17 |
|
c0ex |
|- 0 e. _V |
18 |
|
fvex |
|- ( 2nd ` X ) e. _V |
19 |
17 18
|
opthne |
|- ( <. 0 , ( 2nd ` X ) >. =/= <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. <-> ( 0 =/= 1 \/ ( 2nd ` X ) =/= ( ( ( 2nd ` X ) - K ) mod N ) ) ) |
20 |
16 19
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> <. 0 , ( 2nd ` X ) >. =/= <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) |
21 |
|
simpll |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> N e. ( ZZ>= ` 3 ) ) |
22 |
1
|
eleq2i |
|- ( K e. J <-> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
23 |
22
|
biimpi |
|- ( K e. J -> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
24 |
23
|
ad2antlr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
25 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
26 |
25 1 2 3
|
gpgvtxel2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> ( 2nd ` X ) e. ( 0 ..^ N ) ) |
27 |
26
|
adantrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( 2nd ` X ) e. ( 0 ..^ N ) ) |
28 |
|
gpg3nbgrvtxlem |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) /\ ( 2nd ` X ) e. ( 0 ..^ N ) ) -> ( ( ( 2nd ` X ) + K ) mod N ) =/= ( ( ( 2nd ` X ) - K ) mod N ) ) |
29 |
21 24 27 28
|
syl3anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( ( ( 2nd ` X ) + K ) mod N ) =/= ( ( ( 2nd ` X ) - K ) mod N ) ) |
30 |
29
|
necomd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( ( ( 2nd ` X ) - K ) mod N ) =/= ( ( ( 2nd ` X ) + K ) mod N ) ) |
31 |
30
|
olcd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( 1 =/= 1 \/ ( ( ( 2nd ` X ) - K ) mod N ) =/= ( ( ( 2nd ` X ) + K ) mod N ) ) ) |
32 |
|
ovex |
|- ( ( ( 2nd ` X ) - K ) mod N ) e. _V |
33 |
10 32
|
opthne |
|- ( <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. <-> ( 1 =/= 1 \/ ( ( ( 2nd ` X ) - K ) mod N ) =/= ( ( ( 2nd ` X ) + K ) mod N ) ) ) |
34 |
31 33
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. ) |
35 |
13 20 34
|
3jca |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. =/= <. 0 , ( 2nd ` X ) >. /\ <. 0 , ( 2nd ` X ) >. =/= <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. /\ <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. ) ) |
36 |
|
opex |
|- <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. e. _V |
37 |
|
opex |
|- <. 0 , ( 2nd ` X ) >. e. _V |
38 |
|
opex |
|- <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. e. _V |
39 |
|
hashtpg |
|- ( ( <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. e. _V /\ <. 0 , ( 2nd ` X ) >. e. _V /\ <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. e. _V ) -> ( ( <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. =/= <. 0 , ( 2nd ` X ) >. /\ <. 0 , ( 2nd ` X ) >. =/= <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. /\ <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. ) <-> ( # ` { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } ) = 3 ) ) |
40 |
36 37 38 39
|
mp3an |
|- ( ( <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. =/= <. 0 , ( 2nd ` X ) >. /\ <. 0 , ( 2nd ` X ) >. =/= <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. /\ <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. ) <-> ( # ` { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } ) = 3 ) |
41 |
35 40
|
sylib |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( # ` { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } ) = 3 ) |
42 |
6 41
|
eqtrd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( # ` U ) = 3 ) |