Metamath Proof Explorer


Theorem gpg3nbgrvtx1

Description: In a generalized Petersen graph G , every vertex of the second kind has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025)

Ref Expression
Hypotheses gpgnbgr.j J = 1 ..^ N 2
gpgnbgr.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpgnbgr.v V = Vtx G
gpgnbgr.u U = G NeighbVtx X
Assertion gpg3nbgrvtx1 N 3 K J X V 1 st X = 1 U = 3

Proof

Step Hyp Ref Expression
1 gpgnbgr.j J = 1 ..^ N 2
2 gpgnbgr.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
3 gpgnbgr.v V = Vtx G
4 gpgnbgr.u U = G NeighbVtx X
5 1 2 3 4 gpgnbgrvtx1 N 3 K J X V 1 st X = 1 U = 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N
6 5 fveq2d N 3 K J X V 1 st X = 1 U = 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N
7 ax-1ne0 1 0
8 7 a1i N 3 K J X V 1 st X = 1 1 0
9 8 orcd N 3 K J X V 1 st X = 1 1 0 2 nd X + K mod N 2 nd X
10 1ex 1 V
11 ovex 2 nd X + K mod N V
12 10 11 opthne 1 2 nd X + K mod N 0 2 nd X 1 0 2 nd X + K mod N 2 nd X
13 9 12 sylibr N 3 K J X V 1 st X = 1 1 2 nd X + K mod N 0 2 nd X
14 0ne1 0 1
15 14 a1i N 3 K J X V 1 st X = 1 0 1
16 15 orcd N 3 K J X V 1 st X = 1 0 1 2 nd X 2 nd X K mod N
17 c0ex 0 V
18 fvex 2 nd X V
19 17 18 opthne 0 2 nd X 1 2 nd X K mod N 0 1 2 nd X 2 nd X K mod N
20 16 19 sylibr N 3 K J X V 1 st X = 1 0 2 nd X 1 2 nd X K mod N
21 simpll N 3 K J X V 1 st X = 1 N 3
22 1 eleq2i K J K 1 ..^ N 2
23 22 biimpi K J K 1 ..^ N 2
24 23 ad2antlr N 3 K J X V 1 st X = 1 K 1 ..^ N 2
25 eqid 0 ..^ N = 0 ..^ N
26 25 1 2 3 gpgvtxel2 N 3 K J X V 2 nd X 0 ..^ N
27 26 adantrr N 3 K J X V 1 st X = 1 2 nd X 0 ..^ N
28 gpg3nbgrvtxlem N 3 K 1 ..^ N 2 2 nd X 0 ..^ N 2 nd X + K mod N 2 nd X K mod N
29 21 24 27 28 syl3anc N 3 K J X V 1 st X = 1 2 nd X + K mod N 2 nd X K mod N
30 29 necomd N 3 K J X V 1 st X = 1 2 nd X K mod N 2 nd X + K mod N
31 30 olcd N 3 K J X V 1 st X = 1 1 1 2 nd X K mod N 2 nd X + K mod N
32 ovex 2 nd X K mod N V
33 10 32 opthne 1 2 nd X K mod N 1 2 nd X + K mod N 1 1 2 nd X K mod N 2 nd X + K mod N
34 31 33 sylibr N 3 K J X V 1 st X = 1 1 2 nd X K mod N 1 2 nd X + K mod N
35 13 20 34 3jca N 3 K J X V 1 st X = 1 1 2 nd X + K mod N 0 2 nd X 0 2 nd X 1 2 nd X K mod N 1 2 nd X K mod N 1 2 nd X + K mod N
36 opex 1 2 nd X + K mod N V
37 opex 0 2 nd X V
38 opex 1 2 nd X K mod N V
39 hashtpg 1 2 nd X + K mod N V 0 2 nd X V 1 2 nd X K mod N V 1 2 nd X + K mod N 0 2 nd X 0 2 nd X 1 2 nd X K mod N 1 2 nd X K mod N 1 2 nd X + K mod N 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N = 3
40 36 37 38 39 mp3an 1 2 nd X + K mod N 0 2 nd X 0 2 nd X 1 2 nd X K mod N 1 2 nd X K mod N 1 2 nd X + K mod N 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N = 3
41 35 40 sylib N 3 K J X V 1 st X = 1 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N = 3
42 6 41 eqtrd N 3 K J X V 1 st X = 1 U = 3