| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgnbgr.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
| 2 |
|
gpgnbgr.g |
|- G = ( N gPetersenGr K ) |
| 3 |
|
gpgnbgr.v |
|- V = ( Vtx ` G ) |
| 4 |
|
gpgnbgr.u |
|- U = ( G NeighbVtx X ) |
| 5 |
|
gpgnbgr.e |
|- E = ( Edg ` G ) |
| 6 |
|
eluz4eluz3 |
|- ( N e. ( ZZ>= ` 4 ) -> N e. ( ZZ>= ` 3 ) ) |
| 7 |
1 2 3 4
|
gpg3nbgrvtx0 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( # ` U ) = 3 ) |
| 8 |
6 7
|
sylanl1 |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( # ` U ) = 3 ) |
| 9 |
|
eqid |
|- <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. |
| 10 |
1
|
eleq2i |
|- ( K e. J <-> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
| 11 |
10
|
biimpi |
|- ( K e. J -> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
| 12 |
|
gpgusgra |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) |
| 13 |
2 12
|
eqeltrid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> G e. USGraph ) |
| 14 |
6 11 13
|
syl2an |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) -> G e. USGraph ) |
| 15 |
14
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> G e. USGraph ) |
| 16 |
5
|
usgredgne |
|- ( ( G e. USGraph /\ { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E ) -> <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) |
| 17 |
16
|
neneqd |
|- ( ( G e. USGraph /\ { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E ) -> -. <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) |
| 18 |
17
|
ex |
|- ( G e. USGraph -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E -> -. <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) ) |
| 19 |
15 18
|
syl |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E -> -. <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) ) |
| 20 |
9 19
|
mt2i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> -. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E ) |
| 21 |
|
df-nel |
|- ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> -. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E ) |
| 22 |
20 21
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) |
| 23 |
6
|
adantr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) -> N e. ( ZZ>= ` 3 ) ) |
| 24 |
23
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> N e. ( ZZ>= ` 3 ) ) |
| 25 |
|
simplr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> K e. J ) |
| 26 |
6
|
anim1i |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) ) |
| 27 |
|
simpl |
|- ( ( X e. V /\ ( 1st ` X ) = 0 ) -> X e. V ) |
| 28 |
26 27
|
anim12i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) ) |
| 29 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
| 30 |
29 1 2 3
|
gpgvtxel2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> ( 2nd ` X ) e. ( 0 ..^ N ) ) |
| 31 |
28 30
|
syl |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 2nd ` X ) e. ( 0 ..^ N ) ) |
| 32 |
1 2 3 5
|
gpg5nbgrvtx03starlem1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ ( 2nd ` X ) e. ( 0 ..^ N ) ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) |
| 33 |
24 25 31 32
|
syl3anc |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) |
| 34 |
|
simpll |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> N e. ( ZZ>= ` 4 ) ) |
| 35 |
|
elfzoelz |
|- ( ( 2nd ` X ) e. ( 0 ..^ N ) -> ( 2nd ` X ) e. ZZ ) |
| 36 |
28 30 35
|
3syl |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 2nd ` X ) e. ZZ ) |
| 37 |
1 2 3 5
|
gpg5nbgrvtx03starlem2 |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ ( 2nd ` X ) e. ZZ ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) |
| 38 |
34 25 36 37
|
syl3anc |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) |
| 39 |
|
opex |
|- <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. _V |
| 40 |
|
opex |
|- <. 1 , ( 2nd ` X ) >. e. _V |
| 41 |
|
opex |
|- <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. _V |
| 42 |
|
preq2 |
|- ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } ) |
| 43 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) ) |
| 44 |
42 43
|
syl |
|- ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) ) |
| 45 |
|
preq2 |
|- ( y = <. 1 , ( 2nd ` X ) >. -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } ) |
| 46 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) ) |
| 47 |
45 46
|
syl |
|- ( y = <. 1 , ( 2nd ` X ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) ) |
| 48 |
|
preq2 |
|- ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |
| 49 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
| 50 |
48 49
|
syl |
|- ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
| 51 |
39 40 41 44 47 50
|
raltp |
|- ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E /\ { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E /\ { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
| 52 |
22 33 38 51
|
syl3anbrc |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E ) |
| 53 |
|
prcom |
|- { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } |
| 54 |
|
neleq1 |
|- ( { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } -> ( { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) ) |
| 55 |
53 54
|
ax-mp |
|- ( { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) |
| 56 |
33 55
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) |
| 57 |
|
eqid |
|- <. 1 , ( 2nd ` X ) >. = <. 1 , ( 2nd ` X ) >. |
| 58 |
5
|
usgredgne |
|- ( ( G e. USGraph /\ { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E ) -> <. 1 , ( 2nd ` X ) >. =/= <. 1 , ( 2nd ` X ) >. ) |
| 59 |
58
|
neneqd |
|- ( ( G e. USGraph /\ { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E ) -> -. <. 1 , ( 2nd ` X ) >. = <. 1 , ( 2nd ` X ) >. ) |
| 60 |
59
|
ex |
|- ( G e. USGraph -> ( { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E -> -. <. 1 , ( 2nd ` X ) >. = <. 1 , ( 2nd ` X ) >. ) ) |
| 61 |
15 60
|
syl |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E -> -. <. 1 , ( 2nd ` X ) >. = <. 1 , ( 2nd ` X ) >. ) ) |
| 62 |
57 61
|
mt2i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> -. { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E ) |
| 63 |
|
df-nel |
|- ( { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E <-> -. { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E ) |
| 64 |
62 63
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) |
| 65 |
1 2 3 5
|
gpg5nbgrvtx03starlem3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ ( 2nd ` X ) e. ( 0 ..^ N ) ) -> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) |
| 66 |
24 25 31 65
|
syl3anc |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) |
| 67 |
|
preq2 |
|- ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } ) |
| 68 |
|
neleq1 |
|- ( { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) ) |
| 69 |
67 68
|
syl |
|- ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) ) |
| 70 |
|
preq2 |
|- ( y = <. 1 , ( 2nd ` X ) >. -> { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } ) |
| 71 |
|
neleq1 |
|- ( { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) ) |
| 72 |
70 71
|
syl |
|- ( y = <. 1 , ( 2nd ` X ) >. -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) ) |
| 73 |
|
preq2 |
|- ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |
| 74 |
|
neleq1 |
|- ( { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
| 75 |
73 74
|
syl |
|- ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
| 76 |
39 40 41 69 72 75
|
raltp |
|- ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> ( { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E /\ { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E /\ { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
| 77 |
56 64 66 76
|
syl3anbrc |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 1 , ( 2nd ` X ) >. , y } e/ E ) |
| 78 |
|
prcom |
|- { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } |
| 79 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
| 80 |
78 79
|
ax-mp |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) |
| 81 |
38 80
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) |
| 82 |
|
prcom |
|- { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } |
| 83 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
| 84 |
82 83
|
ax-mp |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) |
| 85 |
66 84
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) |
| 86 |
|
eqid |
|- <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. |
| 87 |
5
|
usgredgne |
|- ( ( G e. USGraph /\ { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E ) -> <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) |
| 88 |
87
|
neneqd |
|- ( ( G e. USGraph /\ { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E ) -> -. <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) |
| 89 |
88
|
ex |
|- ( G e. USGraph -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E -> -. <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) |
| 90 |
15 89
|
syl |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E -> -. <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) |
| 91 |
86 90
|
mt2i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> -. { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E ) |
| 92 |
|
df-nel |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E <-> -. { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E ) |
| 93 |
91 92
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) |
| 94 |
|
preq2 |
|- ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } ) |
| 95 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) ) |
| 96 |
94 95
|
syl |
|- ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) ) |
| 97 |
|
preq2 |
|- ( y = <. 1 , ( 2nd ` X ) >. -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } ) |
| 98 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) ) |
| 99 |
97 98
|
syl |
|- ( y = <. 1 , ( 2nd ` X ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) ) |
| 100 |
|
preq2 |
|- ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |
| 101 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
| 102 |
100 101
|
syl |
|- ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
| 103 |
39 40 41 96 99 102
|
raltp |
|- ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E /\ { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E /\ { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
| 104 |
81 85 93 103
|
syl3anbrc |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E ) |
| 105 |
|
preq1 |
|- ( x = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> { x , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } ) |
| 106 |
|
neleq1 |
|- ( { x , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } -> ( { x , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E ) ) |
| 107 |
105 106
|
syl |
|- ( x = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( { x , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E ) ) |
| 108 |
107
|
ralbidv |
|- ( x = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E ) ) |
| 109 |
|
preq1 |
|- ( x = <. 1 , ( 2nd ` X ) >. -> { x , y } = { <. 1 , ( 2nd ` X ) >. , y } ) |
| 110 |
|
neleq1 |
|- ( { x , y } = { <. 1 , ( 2nd ` X ) >. , y } -> ( { x , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , y } e/ E ) ) |
| 111 |
109 110
|
syl |
|- ( x = <. 1 , ( 2nd ` X ) >. -> ( { x , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , y } e/ E ) ) |
| 112 |
111
|
ralbidv |
|- ( x = <. 1 , ( 2nd ` X ) >. -> ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 1 , ( 2nd ` X ) >. , y } e/ E ) ) |
| 113 |
|
preq1 |
|- ( x = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> { x , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } ) |
| 114 |
|
neleq1 |
|- ( { x , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } -> ( { x , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E ) ) |
| 115 |
113 114
|
syl |
|- ( x = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( { x , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E ) ) |
| 116 |
115
|
ralbidv |
|- ( x = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E ) ) |
| 117 |
39 40 41 108 112 116
|
raltp |
|- ( A. x e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E <-> ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E /\ A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 1 , ( 2nd ` X ) >. , y } e/ E /\ A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E ) ) |
| 118 |
52 77 104 117
|
syl3anbrc |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. x e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E ) |
| 119 |
1 2 3 4
|
gpgnbgrvtx0 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> U = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |
| 120 |
6 119
|
sylanl1 |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> U = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |
| 121 |
120
|
raleqdv |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( A. y e. U { x , y } e/ E <-> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E ) ) |
| 122 |
120 121
|
raleqbidvv |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( A. x e. U A. y e. U { x , y } e/ E <-> A. x e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E ) ) |
| 123 |
118 122
|
mpbird |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. x e. U A. y e. U { x , y } e/ E ) |
| 124 |
8 123
|
jca |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) |