Step |
Hyp |
Ref |
Expression |
1 |
|
gpgnbgr.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
2 |
|
gpgnbgr.g |
|- G = ( N gPetersenGr K ) |
3 |
|
gpgnbgr.v |
|- V = ( Vtx ` G ) |
4 |
|
gpgnbgr.u |
|- U = ( G NeighbVtx X ) |
5 |
|
gpgnbgr.e |
|- E = ( Edg ` G ) |
6 |
|
eluz4eluz3 |
|- ( N e. ( ZZ>= ` 4 ) -> N e. ( ZZ>= ` 3 ) ) |
7 |
1 2 3 4
|
gpg3nbgrvtx0 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( # ` U ) = 3 ) |
8 |
6 7
|
sylanl1 |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( # ` U ) = 3 ) |
9 |
|
eqid |
|- <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. |
10 |
1
|
eleq2i |
|- ( K e. J <-> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
11 |
10
|
biimpi |
|- ( K e. J -> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
12 |
|
gpgusgra |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) |
13 |
2 12
|
eqeltrid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> G e. USGraph ) |
14 |
6 11 13
|
syl2an |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) -> G e. USGraph ) |
15 |
14
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> G e. USGraph ) |
16 |
5
|
usgredgne |
|- ( ( G e. USGraph /\ { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E ) -> <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) |
17 |
16
|
neneqd |
|- ( ( G e. USGraph /\ { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E ) -> -. <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) |
18 |
17
|
ex |
|- ( G e. USGraph -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E -> -. <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) ) |
19 |
15 18
|
syl |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E -> -. <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) ) |
20 |
9 19
|
mt2i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> -. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E ) |
21 |
|
df-nel |
|- ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> -. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E ) |
22 |
20 21
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) |
23 |
6
|
adantr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) -> N e. ( ZZ>= ` 3 ) ) |
24 |
23
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> N e. ( ZZ>= ` 3 ) ) |
25 |
|
simplr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> K e. J ) |
26 |
6
|
anim1i |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) ) |
27 |
|
simpl |
|- ( ( X e. V /\ ( 1st ` X ) = 0 ) -> X e. V ) |
28 |
26 27
|
anim12i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) ) |
29 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
30 |
29 1 2 3
|
gpgvtxel2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> ( 2nd ` X ) e. ( 0 ..^ N ) ) |
31 |
28 30
|
syl |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 2nd ` X ) e. ( 0 ..^ N ) ) |
32 |
1 2 3 5
|
gpg5nbgrvtx03starlem1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ ( 2nd ` X ) e. ( 0 ..^ N ) ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) |
33 |
24 25 31 32
|
syl3anc |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) |
34 |
|
simpll |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> N e. ( ZZ>= ` 4 ) ) |
35 |
|
elfzoelz |
|- ( ( 2nd ` X ) e. ( 0 ..^ N ) -> ( 2nd ` X ) e. ZZ ) |
36 |
28 30 35
|
3syl |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 2nd ` X ) e. ZZ ) |
37 |
1 2 3 5
|
gpg5nbgrvtx03starlem2 |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ ( 2nd ` X ) e. ZZ ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) |
38 |
34 25 36 37
|
syl3anc |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) |
39 |
|
opex |
|- <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. _V |
40 |
|
opex |
|- <. 1 , ( 2nd ` X ) >. e. _V |
41 |
|
opex |
|- <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. _V |
42 |
|
preq2 |
|- ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } ) |
43 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) ) |
44 |
42 43
|
syl |
|- ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) ) |
45 |
|
preq2 |
|- ( y = <. 1 , ( 2nd ` X ) >. -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } ) |
46 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) ) |
47 |
45 46
|
syl |
|- ( y = <. 1 , ( 2nd ` X ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) ) |
48 |
|
preq2 |
|- ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |
49 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
50 |
48 49
|
syl |
|- ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
51 |
39 40 41 44 47 50
|
raltp |
|- ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E /\ { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E /\ { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
52 |
22 33 38 51
|
syl3anbrc |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E ) |
53 |
|
prcom |
|- { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } |
54 |
|
neleq1 |
|- ( { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } -> ( { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) ) |
55 |
53 54
|
ax-mp |
|- ( { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) |
56 |
33 55
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) |
57 |
|
eqid |
|- <. 1 , ( 2nd ` X ) >. = <. 1 , ( 2nd ` X ) >. |
58 |
5
|
usgredgne |
|- ( ( G e. USGraph /\ { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E ) -> <. 1 , ( 2nd ` X ) >. =/= <. 1 , ( 2nd ` X ) >. ) |
59 |
58
|
neneqd |
|- ( ( G e. USGraph /\ { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E ) -> -. <. 1 , ( 2nd ` X ) >. = <. 1 , ( 2nd ` X ) >. ) |
60 |
59
|
ex |
|- ( G e. USGraph -> ( { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E -> -. <. 1 , ( 2nd ` X ) >. = <. 1 , ( 2nd ` X ) >. ) ) |
61 |
15 60
|
syl |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E -> -. <. 1 , ( 2nd ` X ) >. = <. 1 , ( 2nd ` X ) >. ) ) |
62 |
57 61
|
mt2i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> -. { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E ) |
63 |
|
df-nel |
|- ( { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E <-> -. { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E ) |
64 |
62 63
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) |
65 |
1 2 3 5
|
gpg5nbgrvtx03starlem3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ ( 2nd ` X ) e. ( 0 ..^ N ) ) -> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) |
66 |
24 25 31 65
|
syl3anc |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) |
67 |
|
preq2 |
|- ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } ) |
68 |
|
neleq1 |
|- ( { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) ) |
69 |
67 68
|
syl |
|- ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) ) |
70 |
|
preq2 |
|- ( y = <. 1 , ( 2nd ` X ) >. -> { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } ) |
71 |
|
neleq1 |
|- ( { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) ) |
72 |
70 71
|
syl |
|- ( y = <. 1 , ( 2nd ` X ) >. -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) ) |
73 |
|
preq2 |
|- ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |
74 |
|
neleq1 |
|- ( { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
75 |
73 74
|
syl |
|- ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
76 |
39 40 41 69 72 75
|
raltp |
|- ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> ( { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E /\ { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E /\ { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
77 |
56 64 66 76
|
syl3anbrc |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 1 , ( 2nd ` X ) >. , y } e/ E ) |
78 |
|
prcom |
|- { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } |
79 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
80 |
78 79
|
ax-mp |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) |
81 |
38 80
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) |
82 |
|
prcom |
|- { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } |
83 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
84 |
82 83
|
ax-mp |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) |
85 |
66 84
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) |
86 |
|
eqid |
|- <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. |
87 |
5
|
usgredgne |
|- ( ( G e. USGraph /\ { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E ) -> <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) |
88 |
87
|
neneqd |
|- ( ( G e. USGraph /\ { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E ) -> -. <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) |
89 |
88
|
ex |
|- ( G e. USGraph -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E -> -. <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) |
90 |
15 89
|
syl |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E -> -. <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) ) |
91 |
86 90
|
mt2i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> -. { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E ) |
92 |
|
df-nel |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E <-> -. { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E ) |
93 |
91 92
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) |
94 |
|
preq2 |
|- ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } ) |
95 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) ) |
96 |
94 95
|
syl |
|- ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) ) |
97 |
|
preq2 |
|- ( y = <. 1 , ( 2nd ` X ) >. -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } ) |
98 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) ) |
99 |
97 98
|
syl |
|- ( y = <. 1 , ( 2nd ` X ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) ) |
100 |
|
preq2 |
|- ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |
101 |
|
neleq1 |
|- ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
102 |
100 101
|
syl |
|- ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
103 |
39 40 41 96 99 102
|
raltp |
|- ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E /\ { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E /\ { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) ) |
104 |
81 85 93 103
|
syl3anbrc |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E ) |
105 |
|
preq1 |
|- ( x = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> { x , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } ) |
106 |
|
neleq1 |
|- ( { x , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } -> ( { x , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E ) ) |
107 |
105 106
|
syl |
|- ( x = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( { x , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E ) ) |
108 |
107
|
ralbidv |
|- ( x = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E ) ) |
109 |
|
preq1 |
|- ( x = <. 1 , ( 2nd ` X ) >. -> { x , y } = { <. 1 , ( 2nd ` X ) >. , y } ) |
110 |
|
neleq1 |
|- ( { x , y } = { <. 1 , ( 2nd ` X ) >. , y } -> ( { x , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , y } e/ E ) ) |
111 |
109 110
|
syl |
|- ( x = <. 1 , ( 2nd ` X ) >. -> ( { x , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , y } e/ E ) ) |
112 |
111
|
ralbidv |
|- ( x = <. 1 , ( 2nd ` X ) >. -> ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 1 , ( 2nd ` X ) >. , y } e/ E ) ) |
113 |
|
preq1 |
|- ( x = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> { x , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } ) |
114 |
|
neleq1 |
|- ( { x , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } -> ( { x , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E ) ) |
115 |
113 114
|
syl |
|- ( x = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( { x , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E ) ) |
116 |
115
|
ralbidv |
|- ( x = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E ) ) |
117 |
39 40 41 108 112 116
|
raltp |
|- ( A. x e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E <-> ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E /\ A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 1 , ( 2nd ` X ) >. , y } e/ E /\ A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E ) ) |
118 |
52 77 104 117
|
syl3anbrc |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. x e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E ) |
119 |
1 2 3 4
|
gpgnbgrvtx0 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> U = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |
120 |
6 119
|
sylanl1 |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> U = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } ) |
121 |
120
|
raleqdv |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( A. y e. U { x , y } e/ E <-> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E ) ) |
122 |
120 121
|
raleqbidvv |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( A. x e. U A. y e. U { x , y } e/ E <-> A. x e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E ) ) |
123 |
118 122
|
mpbird |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. x e. U A. y e. U { x , y } e/ E ) |
124 |
8 123
|
jca |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) |