Metamath Proof Explorer


Theorem gpg5nbgrvtx03star

Description: In a generalized Petersen graph G(N,K) of order greater than 8 ( 3 < N ), every vertex of the first kind has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every vertex of the first kind induces a subgraph which is isomorphic to a 3-star). (Contributed by AV, 31-Aug-2025)

Ref Expression
Hypotheses gpgnbgr.j
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
gpgnbgr.g
|- G = ( N gPetersenGr K )
gpgnbgr.v
|- V = ( Vtx ` G )
gpgnbgr.u
|- U = ( G NeighbVtx X )
gpgnbgr.e
|- E = ( Edg ` G )
Assertion gpg5nbgrvtx03star
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) )

Proof

Step Hyp Ref Expression
1 gpgnbgr.j
 |-  J = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
2 gpgnbgr.g
 |-  G = ( N gPetersenGr K )
3 gpgnbgr.v
 |-  V = ( Vtx ` G )
4 gpgnbgr.u
 |-  U = ( G NeighbVtx X )
5 gpgnbgr.e
 |-  E = ( Edg ` G )
6 eluz4eluz3
 |-  ( N e. ( ZZ>= ` 4 ) -> N e. ( ZZ>= ` 3 ) )
7 1 2 3 4 gpg3nbgrvtx0
 |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( # ` U ) = 3 )
8 6 7 sylanl1
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( # ` U ) = 3 )
9 eqid
 |-  <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >.
10 1 eleq2i
 |-  ( K e. J <-> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) )
11 10 biimpi
 |-  ( K e. J -> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) )
12 gpgusgra
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph )
13 2 12 eqeltrid
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> G e. USGraph )
14 6 11 13 syl2an
 |-  ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) -> G e. USGraph )
15 14 adantr
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> G e. USGraph )
16 5 usgredgne
 |-  ( ( G e. USGraph /\ { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E ) -> <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. )
17 16 neneqd
 |-  ( ( G e. USGraph /\ { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E ) -> -. <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. )
18 17 ex
 |-  ( G e. USGraph -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E -> -. <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) )
19 15 18 syl
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E -> -. <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. ) )
20 9 19 mt2i
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> -. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E )
21 df-nel
 |-  ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> -. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e. E )
22 20 21 sylibr
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E )
23 6 adantr
 |-  ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) -> N e. ( ZZ>= ` 3 ) )
24 23 adantr
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> N e. ( ZZ>= ` 3 ) )
25 simplr
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> K e. J )
26 6 anim1i
 |-  ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) )
27 simpl
 |-  ( ( X e. V /\ ( 1st ` X ) = 0 ) -> X e. V )
28 26 27 anim12i
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) )
29 eqid
 |-  ( 0 ..^ N ) = ( 0 ..^ N )
30 29 1 2 3 gpgvtxel2
 |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> ( 2nd ` X ) e. ( 0 ..^ N ) )
31 28 30 syl
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 2nd ` X ) e. ( 0 ..^ N ) )
32 1 2 3 5 gpg5nbgrvtx03starlem1
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ ( 2nd ` X ) e. ( 0 ..^ N ) ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E )
33 24 25 31 32 syl3anc
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E )
34 simpll
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> N e. ( ZZ>= ` 4 ) )
35 elfzoelz
 |-  ( ( 2nd ` X ) e. ( 0 ..^ N ) -> ( 2nd ` X ) e. ZZ )
36 28 30 35 3syl
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( 2nd ` X ) e. ZZ )
37 1 2 3 5 gpg5nbgrvtx03starlem2
 |-  ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ ( 2nd ` X ) e. ZZ ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E )
38 34 25 36 37 syl3anc
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E )
39 opex
 |-  <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. e. _V
40 opex
 |-  <. 1 , ( 2nd ` X ) >. e. _V
41 opex
 |-  <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. e. _V
42 preq2
 |-  ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } )
43 neleq1
 |-  ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) )
44 42 43 syl
 |-  ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) )
45 preq2
 |-  ( y = <. 1 , ( 2nd ` X ) >. -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } )
46 neleq1
 |-  ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) )
47 45 46 syl
 |-  ( y = <. 1 , ( 2nd ` X ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) )
48 preq2
 |-  ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } )
49 neleq1
 |-  ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) )
50 48 49 syl
 |-  ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) )
51 39 40 41 44 47 50 raltp
 |-  ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E <-> ( { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E /\ { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E /\ { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) )
52 22 33 38 51 syl3anbrc
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E )
53 prcom
 |-  { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. }
54 neleq1
 |-  ( { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } -> ( { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) )
55 53 54 ax-mp
 |-  ( { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E )
56 33 55 sylibr
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E )
57 eqid
 |-  <. 1 , ( 2nd ` X ) >. = <. 1 , ( 2nd ` X ) >.
58 5 usgredgne
 |-  ( ( G e. USGraph /\ { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E ) -> <. 1 , ( 2nd ` X ) >. =/= <. 1 , ( 2nd ` X ) >. )
59 58 neneqd
 |-  ( ( G e. USGraph /\ { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E ) -> -. <. 1 , ( 2nd ` X ) >. = <. 1 , ( 2nd ` X ) >. )
60 59 ex
 |-  ( G e. USGraph -> ( { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E -> -. <. 1 , ( 2nd ` X ) >. = <. 1 , ( 2nd ` X ) >. ) )
61 15 60 syl
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E -> -. <. 1 , ( 2nd ` X ) >. = <. 1 , ( 2nd ` X ) >. ) )
62 57 61 mt2i
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> -. { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E )
63 df-nel
 |-  ( { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E <-> -. { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e. E )
64 62 63 sylibr
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E )
65 1 2 3 5 gpg5nbgrvtx03starlem3
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ ( 2nd ` X ) e. ( 0 ..^ N ) ) -> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E )
66 24 25 31 65 syl3anc
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E )
67 preq2
 |-  ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } )
68 neleq1
 |-  ( { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) )
69 67 68 syl
 |-  ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) )
70 preq2
 |-  ( y = <. 1 , ( 2nd ` X ) >. -> { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } )
71 neleq1
 |-  ( { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) )
72 70 71 syl
 |-  ( y = <. 1 , ( 2nd ` X ) >. -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) )
73 preq2
 |-  ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } )
74 neleq1
 |-  ( { <. 1 , ( 2nd ` X ) >. , y } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) )
75 73 74 syl
 |-  ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) )
76 39 40 41 69 72 75 raltp
 |-  ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 1 , ( 2nd ` X ) >. , y } e/ E <-> ( { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E /\ { <. 1 , ( 2nd ` X ) >. , <. 1 , ( 2nd ` X ) >. } e/ E /\ { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) )
77 56 64 66 76 syl3anbrc
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 1 , ( 2nd ` X ) >. , y } e/ E )
78 prcom
 |-  { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. }
79 neleq1
 |-  ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) )
80 78 79 ax-mp
 |-  ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E )
81 38 80 sylibr
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E )
82 prcom
 |-  { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. }
83 neleq1
 |-  ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } = { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) )
84 82 83 ax-mp
 |-  ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E <-> { <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E )
85 66 84 sylibr
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E )
86 eqid
 |-  <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >.
87 5 usgredgne
 |-  ( ( G e. USGraph /\ { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E ) -> <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. =/= <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. )
88 87 neneqd
 |-  ( ( G e. USGraph /\ { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E ) -> -. <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. )
89 88 ex
 |-  ( G e. USGraph -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E -> -. <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) )
90 15 89 syl
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E -> -. <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. ) )
91 86 90 mt2i
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> -. { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E )
92 df-nel
 |-  ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E <-> -. { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e. E )
93 91 92 sylibr
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E )
94 preq2
 |-  ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } )
95 neleq1
 |-  ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) )
96 94 95 syl
 |-  ( y = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E ) )
97 preq2
 |-  ( y = <. 1 , ( 2nd ` X ) >. -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } )
98 neleq1
 |-  ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) )
99 97 98 syl
 |-  ( y = <. 1 , ( 2nd ` X ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E ) )
100 preq2
 |-  ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } )
101 neleq1
 |-  ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) )
102 100 101 syl
 |-  ( y = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) )
103 39 40 41 96 99 102 raltp
 |-  ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E <-> ( { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. } e/ E /\ { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. } e/ E /\ { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } e/ E ) )
104 81 85 93 103 syl3anbrc
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E )
105 preq1
 |-  ( x = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> { x , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } )
106 neleq1
 |-  ( { x , y } = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } -> ( { x , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E ) )
107 105 106 syl
 |-  ( x = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( { x , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E ) )
108 107 ralbidv
 |-  ( x = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. -> ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E ) )
109 preq1
 |-  ( x = <. 1 , ( 2nd ` X ) >. -> { x , y } = { <. 1 , ( 2nd ` X ) >. , y } )
110 neleq1
 |-  ( { x , y } = { <. 1 , ( 2nd ` X ) >. , y } -> ( { x , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , y } e/ E ) )
111 109 110 syl
 |-  ( x = <. 1 , ( 2nd ` X ) >. -> ( { x , y } e/ E <-> { <. 1 , ( 2nd ` X ) >. , y } e/ E ) )
112 111 ralbidv
 |-  ( x = <. 1 , ( 2nd ` X ) >. -> ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 1 , ( 2nd ` X ) >. , y } e/ E ) )
113 preq1
 |-  ( x = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> { x , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } )
114 neleq1
 |-  ( { x , y } = { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } -> ( { x , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E ) )
115 113 114 syl
 |-  ( x = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( { x , y } e/ E <-> { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E ) )
116 115 ralbidv
 |-  ( x = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. -> ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E ) )
117 39 40 41 108 112 116 raltp
 |-  ( A. x e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E <-> ( A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , y } e/ E /\ A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 1 , ( 2nd ` X ) >. , y } e/ E /\ A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. , y } e/ E ) )
118 52 77 104 117 syl3anbrc
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. x e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E )
119 1 2 3 4 gpgnbgrvtx0
 |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> U = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } )
120 6 119 sylanl1
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> U = { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } )
121 120 raleqdv
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( A. y e. U { x , y } e/ E <-> A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E ) )
122 120 121 raleqbidvv
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( A. x e. U A. y e. U { x , y } e/ E <-> A. x e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } A. y e. { <. 0 , ( ( ( 2nd ` X ) + 1 ) mod N ) >. , <. 1 , ( 2nd ` X ) >. , <. 0 , ( ( ( 2nd ` X ) - 1 ) mod N ) >. } { x , y } e/ E ) )
123 118 122 mpbird
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> A. x e. U A. y e. U { x , y } e/ E )
124 8 123 jca
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) )