Step |
Hyp |
Ref |
Expression |
1 |
|
gpg5nbgrvtx03starlem1.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
2 |
|
gpg5nbgrvtx03starlem1.g |
|- G = ( N gPetersenGr K ) |
3 |
|
gpg5nbgrvtx03starlem1.v |
|- V = ( Vtx ` G ) |
4 |
|
gpg5nbgrvtx03starlem1.e |
|- E = ( Edg ` G ) |
5 |
|
opex |
|- <. 1 , X >. e. _V |
6 |
|
opex |
|- <. 0 , ( ( X - 1 ) mod N ) >. e. _V |
7 |
5 6
|
pm3.2i |
|- ( <. 1 , X >. e. _V /\ <. 0 , ( ( X - 1 ) mod N ) >. e. _V ) |
8 |
|
opex |
|- <. 0 , x >. e. _V |
9 |
|
opex |
|- <. 0 , ( ( x + 1 ) mod N ) >. e. _V |
10 |
8 9
|
pm3.2i |
|- ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V ) |
11 |
7 10
|
pm3.2i |
|- ( ( <. 1 , X >. e. _V /\ <. 0 , ( ( X - 1 ) mod N ) >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V ) ) |
12 |
|
ax-1ne0 |
|- 1 =/= 0 |
13 |
12
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> 1 =/= 0 ) |
14 |
13
|
orcd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( 1 =/= 0 \/ X =/= x ) ) |
15 |
|
1ex |
|- 1 e. _V |
16 |
15
|
a1i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) -> 1 e. _V ) |
17 |
|
simp3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) -> X e. W ) |
18 |
16 17
|
jca |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) -> ( 1 e. _V /\ X e. W ) ) |
19 |
18
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( 1 e. _V /\ X e. W ) ) |
20 |
|
opthneg |
|- ( ( 1 e. _V /\ X e. W ) -> ( <. 1 , X >. =/= <. 0 , x >. <-> ( 1 =/= 0 \/ X =/= x ) ) ) |
21 |
19 20
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , X >. =/= <. 0 , x >. <-> ( 1 =/= 0 \/ X =/= x ) ) ) |
22 |
14 21
|
mpbird |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> <. 1 , X >. =/= <. 0 , x >. ) |
23 |
12
|
orci |
|- ( 1 =/= 0 \/ X =/= ( ( x + 1 ) mod N ) ) |
24 |
23
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( 1 =/= 0 \/ X =/= ( ( x + 1 ) mod N ) ) ) |
25 |
|
opthneg |
|- ( ( 1 e. _V /\ X e. W ) -> ( <. 1 , X >. =/= <. 0 , ( ( x + 1 ) mod N ) >. <-> ( 1 =/= 0 \/ X =/= ( ( x + 1 ) mod N ) ) ) ) |
26 |
19 25
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , X >. =/= <. 0 , ( ( x + 1 ) mod N ) >. <-> ( 1 =/= 0 \/ X =/= ( ( x + 1 ) mod N ) ) ) ) |
27 |
24 26
|
mpbird |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> <. 1 , X >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) |
28 |
22 27
|
jca |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , X >. =/= <. 0 , x >. /\ <. 1 , X >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) ) |
29 |
28
|
orcd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 1 , X >. =/= <. 0 , x >. /\ <. 1 , X >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) \/ ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. /\ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) ) ) |
30 |
|
prneimg |
|- ( ( ( <. 1 , X >. e. _V /\ <. 0 , ( ( X - 1 ) mod N ) >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V ) ) -> ( ( ( <. 1 , X >. =/= <. 0 , x >. /\ <. 1 , X >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) \/ ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. /\ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) ) -> { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) ) |
31 |
11 29 30
|
mpsyl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) |
32 |
|
eleq1 |
|- ( X = x -> ( X e. ( 0 ..^ N ) <-> x e. ( 0 ..^ N ) ) ) |
33 |
32
|
adantr |
|- ( ( X = x /\ ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) ) -> ( X e. ( 0 ..^ N ) <-> x e. ( 0 ..^ N ) ) ) |
34 |
|
uzuzle23 |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) |
35 |
34
|
3ad2ant1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) -> N e. ( ZZ>= ` 2 ) ) |
36 |
|
m1modne |
|- ( ( N e. ( ZZ>= ` 2 ) /\ X e. ( 0 ..^ N ) ) -> ( ( X - 1 ) mod N ) =/= X ) |
37 |
35 36
|
sylan |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ X e. ( 0 ..^ N ) ) -> ( ( X - 1 ) mod N ) =/= X ) |
38 |
37
|
ex |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) -> ( X e. ( 0 ..^ N ) -> ( ( X - 1 ) mod N ) =/= X ) ) |
39 |
38
|
adantl |
|- ( ( X = x /\ ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) ) -> ( X e. ( 0 ..^ N ) -> ( ( X - 1 ) mod N ) =/= X ) ) |
40 |
33 39
|
sylbird |
|- ( ( X = x /\ ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) ) -> ( x e. ( 0 ..^ N ) -> ( ( X - 1 ) mod N ) =/= X ) ) |
41 |
40
|
impr |
|- ( ( X = x /\ ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X - 1 ) mod N ) =/= X ) |
42 |
|
neeq2 |
|- ( X = x -> ( ( ( X - 1 ) mod N ) =/= X <-> ( ( X - 1 ) mod N ) =/= x ) ) |
43 |
42
|
adantr |
|- ( ( X = x /\ ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( X - 1 ) mod N ) =/= X <-> ( ( X - 1 ) mod N ) =/= x ) ) |
44 |
41 43
|
mpbid |
|- ( ( X = x /\ ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X - 1 ) mod N ) =/= x ) |
45 |
44
|
orcd |
|- ( ( X = x /\ ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( X - 1 ) mod N ) =/= x \/ X =/= x ) ) |
46 |
45
|
ex |
|- ( X = x -> ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X - 1 ) mod N ) =/= x \/ X =/= x ) ) ) |
47 |
|
olc |
|- ( X =/= x -> ( ( ( X - 1 ) mod N ) =/= x \/ X =/= x ) ) |
48 |
47
|
a1d |
|- ( X =/= x -> ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X - 1 ) mod N ) =/= x \/ X =/= x ) ) ) |
49 |
46 48
|
pm2.61ine |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X - 1 ) mod N ) =/= x \/ X =/= x ) ) |
50 |
|
c0ex |
|- 0 e. _V |
51 |
|
ovex |
|- ( ( X - 1 ) mod N ) e. _V |
52 |
50 51
|
opthne |
|- ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. <-> ( 0 =/= 0 \/ ( ( X - 1 ) mod N ) =/= x ) ) |
53 |
|
neirr |
|- -. 0 =/= 0 |
54 |
53
|
biorfi |
|- ( ( ( X - 1 ) mod N ) =/= x <-> ( 0 =/= 0 \/ ( ( X - 1 ) mod N ) =/= x ) ) |
55 |
52 54
|
bitr4i |
|- ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. <-> ( ( X - 1 ) mod N ) =/= x ) |
56 |
55
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. <-> ( ( X - 1 ) mod N ) =/= x ) ) |
57 |
|
opthneg |
|- ( ( 1 e. _V /\ X e. W ) -> ( <. 1 , X >. =/= <. 1 , x >. <-> ( 1 =/= 1 \/ X =/= x ) ) ) |
58 |
19 57
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , X >. =/= <. 1 , x >. <-> ( 1 =/= 1 \/ X =/= x ) ) ) |
59 |
|
neirr |
|- -. 1 =/= 1 |
60 |
59
|
biorfi |
|- ( X =/= x <-> ( 1 =/= 1 \/ X =/= x ) ) |
61 |
58 60
|
bitr4di |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , X >. =/= <. 1 , x >. <-> X =/= x ) ) |
62 |
56 61
|
orbi12d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. \/ <. 1 , X >. =/= <. 1 , x >. ) <-> ( ( ( X - 1 ) mod N ) =/= x \/ X =/= x ) ) ) |
63 |
49 62
|
mpbird |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. \/ <. 1 , X >. =/= <. 1 , x >. ) ) |
64 |
22
|
olcd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , X >. =/= <. 0 , x >. ) ) |
65 |
63 64
|
jca |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. \/ <. 1 , X >. =/= <. 1 , x >. ) /\ ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , X >. =/= <. 0 , x >. ) ) ) |
66 |
6 5
|
pm3.2i |
|- ( <. 0 , ( ( X - 1 ) mod N ) >. e. _V /\ <. 1 , X >. e. _V ) |
67 |
|
opex |
|- <. 1 , x >. e. _V |
68 |
8 67
|
pm3.2i |
|- ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) |
69 |
66 68
|
pm3.2i |
|- ( ( <. 0 , ( ( X - 1 ) mod N ) >. e. _V /\ <. 1 , X >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) ) |
70 |
|
prneimg2 |
|- ( ( ( <. 0 , ( ( X - 1 ) mod N ) >. e. _V /\ <. 1 , X >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) ) -> ( { <. 0 , ( ( X - 1 ) mod N ) >. , <. 1 , X >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> ( ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. \/ <. 1 , X >. =/= <. 1 , x >. ) /\ ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , X >. =/= <. 0 , x >. ) ) ) ) |
71 |
69 70
|
mp1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( { <. 0 , ( ( X - 1 ) mod N ) >. , <. 1 , X >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> ( ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. \/ <. 1 , X >. =/= <. 1 , x >. ) /\ ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , X >. =/= <. 0 , x >. ) ) ) ) |
72 |
65 71
|
mpbird |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> { <. 0 , ( ( X - 1 ) mod N ) >. , <. 1 , X >. } =/= { <. 0 , x >. , <. 1 , x >. } ) |
73 |
|
prcom |
|- { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , ( ( X - 1 ) mod N ) >. , <. 1 , X >. } |
74 |
73
|
neeq1i |
|- ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> { <. 0 , ( ( X - 1 ) mod N ) >. , <. 1 , X >. } =/= { <. 0 , x >. , <. 1 , x >. } ) |
75 |
72 74
|
sylibr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } ) |
76 |
|
opex |
|- <. 1 , ( ( x + K ) mod N ) >. e. _V |
77 |
67 76
|
pm3.2i |
|- ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V ) |
78 |
7 77
|
pm3.2i |
|- ( ( <. 1 , X >. e. _V /\ <. 0 , ( ( X - 1 ) mod N ) >. e. _V ) /\ ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V ) ) |
79 |
|
0ne1 |
|- 0 =/= 1 |
80 |
79
|
orci |
|- ( 0 =/= 1 \/ ( ( X - 1 ) mod N ) =/= x ) |
81 |
50 51
|
opthne |
|- ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. <-> ( 0 =/= 1 \/ ( ( X - 1 ) mod N ) =/= x ) ) |
82 |
80 81
|
mpbir |
|- <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. |
83 |
79
|
orci |
|- ( 0 =/= 1 \/ ( ( X - 1 ) mod N ) =/= ( ( x + K ) mod N ) ) |
84 |
50 51
|
opthne |
|- ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( 0 =/= 1 \/ ( ( X - 1 ) mod N ) =/= ( ( x + K ) mod N ) ) ) |
85 |
83 84
|
mpbir |
|- <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. |
86 |
82 85
|
pm3.2i |
|- ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. /\ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) |
87 |
86
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. /\ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) ) |
88 |
87
|
olcd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 1 , X >. =/= <. 1 , x >. /\ <. 1 , X >. =/= <. 1 , ( ( x + K ) mod N ) >. ) \/ ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. /\ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) ) ) |
89 |
|
prneimg |
|- ( ( ( <. 1 , X >. e. _V /\ <. 0 , ( ( X - 1 ) mod N ) >. e. _V ) /\ ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V ) ) -> ( ( ( <. 1 , X >. =/= <. 1 , x >. /\ <. 1 , X >. =/= <. 1 , ( ( x + K ) mod N ) >. ) \/ ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. /\ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) ) -> { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
90 |
78 88 89
|
mpsyl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) |
91 |
31 75 90
|
3jca |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
92 |
91
|
ralrimiva |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) -> A. x e. ( 0 ..^ N ) ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
93 |
|
ralnex |
|- ( A. x e. ( 0 ..^ N ) -. ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> -. E. x e. ( 0 ..^ N ) ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
94 |
|
3ioran |
|- ( -. ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( -. { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ -. { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } /\ -. { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
95 |
|
df-ne |
|- ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } <-> -. { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) |
96 |
|
df-ne |
|- ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> -. { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } ) |
97 |
|
df-ne |
|- ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } <-> -. { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) |
98 |
95 96 97
|
3anbi123i |
|- ( ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( -. { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ -. { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } /\ -. { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
99 |
94 98
|
bitr4i |
|- ( -. ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
100 |
99
|
ralbii |
|- ( A. x e. ( 0 ..^ N ) -. ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> A. x e. ( 0 ..^ N ) ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
101 |
93 100
|
bitr3i |
|- ( -. E. x e. ( 0 ..^ N ) ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> A. x e. ( 0 ..^ N ) ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
102 |
92 101
|
sylibr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) -> -. E. x e. ( 0 ..^ N ) ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
103 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
104 |
103 1 2 4
|
gpgedgel |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } e. E <-> E. x e. ( 0 ..^ N ) ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
105 |
104
|
3adant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) -> ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } e. E <-> E. x e. ( 0 ..^ N ) ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
106 |
102 105
|
mtbird |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) -> -. { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } e. E ) |
107 |
|
df-nel |
|- ( { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } e/ E <-> -. { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } e. E ) |
108 |
106 107
|
sylibr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J /\ X e. W ) -> { <. 1 , X >. , <. 0 , ( ( X - 1 ) mod N ) >. } e/ E ) |