Step |
Hyp |
Ref |
Expression |
1 |
|
gpg5nbgrvtx03starlem1.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
2 |
|
gpg5nbgrvtx03starlem1.g |
|- G = ( N gPetersenGr K ) |
3 |
|
gpg5nbgrvtx03starlem1.v |
|- V = ( Vtx ` G ) |
4 |
|
gpg5nbgrvtx03starlem1.e |
|- E = ( Edg ` G ) |
5 |
|
opex |
|- <. 1 , ( ( X + K ) mod N ) >. e. _V |
6 |
|
opex |
|- <. 0 , X >. e. _V |
7 |
5 6
|
pm3.2i |
|- ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 0 , X >. e. _V ) |
8 |
|
opex |
|- <. 0 , x >. e. _V |
9 |
|
opex |
|- <. 0 , ( ( x + 1 ) mod N ) >. e. _V |
10 |
8 9
|
pm3.2i |
|- ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V ) |
11 |
7 10
|
pm3.2i |
|- ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 0 , X >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V ) ) |
12 |
|
ax-1ne0 |
|- 1 =/= 0 |
13 |
12
|
orci |
|- ( 1 =/= 0 \/ ( ( X + K ) mod N ) =/= x ) |
14 |
|
1ex |
|- 1 e. _V |
15 |
|
ovex |
|- ( ( X + K ) mod N ) e. _V |
16 |
14 15
|
opthne |
|- ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. <-> ( 1 =/= 0 \/ ( ( X + K ) mod N ) =/= x ) ) |
17 |
13 16
|
mpbir |
|- <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. |
18 |
12
|
orci |
|- ( 1 =/= 0 \/ ( ( X + K ) mod N ) =/= ( ( x + 1 ) mod N ) ) |
19 |
14 15
|
opthne |
|- ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. <-> ( 1 =/= 0 \/ ( ( X + K ) mod N ) =/= ( ( x + 1 ) mod N ) ) ) |
20 |
18 19
|
mpbir |
|- <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. |
21 |
17 20
|
pm3.2i |
|- ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) |
22 |
21
|
a1i |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) ) |
23 |
22
|
orcd |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) \/ ( <. 0 , X >. =/= <. 0 , x >. /\ <. 0 , X >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) ) ) |
24 |
|
prneimg |
|- ( ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 0 , X >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V ) ) -> ( ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) \/ ( <. 0 , X >. =/= <. 0 , x >. /\ <. 0 , X >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) ) |
25 |
11 23 24
|
mpsyl |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) |
26 |
|
0ne1 |
|- 0 =/= 1 |
27 |
26
|
orci |
|- ( 0 =/= 1 \/ X =/= x ) |
28 |
|
c0ex |
|- 0 e. _V |
29 |
28
|
a1i |
|- ( ( N = 5 /\ K e. J ) -> 0 e. _V ) |
30 |
29
|
anim1i |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. W ) -> ( 0 e. _V /\ X e. W ) ) |
31 |
30
|
adantr |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( 0 e. _V /\ X e. W ) ) |
32 |
|
opthneg |
|- ( ( 0 e. _V /\ X e. W ) -> ( <. 0 , X >. =/= <. 1 , x >. <-> ( 0 =/= 1 \/ X =/= x ) ) ) |
33 |
31 32
|
syl |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , X >. =/= <. 1 , x >. <-> ( 0 =/= 1 \/ X =/= x ) ) ) |
34 |
27 33
|
mpbiri |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> <. 0 , X >. =/= <. 1 , x >. ) |
35 |
34
|
olcd |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. \/ <. 0 , X >. =/= <. 1 , x >. ) ) |
36 |
|
eleq1 |
|- ( X = x -> ( X e. ( 0 ..^ N ) <-> x e. ( 0 ..^ N ) ) ) |
37 |
36
|
adantr |
|- ( ( X = x /\ ( ( N = 5 /\ K e. J ) /\ X e. W ) ) -> ( X e. ( 0 ..^ N ) <-> x e. ( 0 ..^ N ) ) ) |
38 |
|
oveq2 |
|- ( N = 5 -> ( 0 ..^ N ) = ( 0 ..^ 5 ) ) |
39 |
38
|
eleq2d |
|- ( N = 5 -> ( X e. ( 0 ..^ N ) <-> X e. ( 0 ..^ 5 ) ) ) |
40 |
39
|
biimpd |
|- ( N = 5 -> ( X e. ( 0 ..^ N ) -> X e. ( 0 ..^ 5 ) ) ) |
41 |
40
|
ad2antrr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. W ) -> ( X e. ( 0 ..^ N ) -> X e. ( 0 ..^ 5 ) ) ) |
42 |
41
|
imp |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ X e. ( 0 ..^ N ) ) -> X e. ( 0 ..^ 5 ) ) |
43 |
|
5nn |
|- 5 e. NN |
44 |
|
eleq1 |
|- ( N = 5 -> ( N e. NN <-> 5 e. NN ) ) |
45 |
43 44
|
mpbiri |
|- ( N = 5 -> N e. NN ) |
46 |
1
|
ceilhalfelfzo1 |
|- ( N e. NN -> ( K e. J -> K e. ( 1 ..^ N ) ) ) |
47 |
45 46
|
syl |
|- ( N = 5 -> ( K e. J -> K e. ( 1 ..^ N ) ) ) |
48 |
|
oveq2 |
|- ( N = 5 -> ( 1 ..^ N ) = ( 1 ..^ 5 ) ) |
49 |
48
|
eleq2d |
|- ( N = 5 -> ( K e. ( 1 ..^ N ) <-> K e. ( 1 ..^ 5 ) ) ) |
50 |
47 49
|
sylibd |
|- ( N = 5 -> ( K e. J -> K e. ( 1 ..^ 5 ) ) ) |
51 |
50
|
imp |
|- ( ( N = 5 /\ K e. J ) -> K e. ( 1 ..^ 5 ) ) |
52 |
51
|
ad2antrr |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ X e. ( 0 ..^ N ) ) -> K e. ( 1 ..^ 5 ) ) |
53 |
|
plusmod5ne |
|- ( ( X e. ( 0 ..^ 5 ) /\ K e. ( 1 ..^ 5 ) ) -> ( ( X + K ) mod 5 ) =/= X ) |
54 |
42 52 53
|
syl2anc |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ X e. ( 0 ..^ N ) ) -> ( ( X + K ) mod 5 ) =/= X ) |
55 |
|
oveq2 |
|- ( N = 5 -> ( ( X + K ) mod N ) = ( ( X + K ) mod 5 ) ) |
56 |
55
|
neeq1d |
|- ( N = 5 -> ( ( ( X + K ) mod N ) =/= X <-> ( ( X + K ) mod 5 ) =/= X ) ) |
57 |
56
|
adantr |
|- ( ( N = 5 /\ K e. J ) -> ( ( ( X + K ) mod N ) =/= X <-> ( ( X + K ) mod 5 ) =/= X ) ) |
58 |
57
|
ad2antrr |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ X e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= X <-> ( ( X + K ) mod 5 ) =/= X ) ) |
59 |
54 58
|
mpbird |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ X e. ( 0 ..^ N ) ) -> ( ( X + K ) mod N ) =/= X ) |
60 |
59
|
ex |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. W ) -> ( X e. ( 0 ..^ N ) -> ( ( X + K ) mod N ) =/= X ) ) |
61 |
60
|
adantl |
|- ( ( X = x /\ ( ( N = 5 /\ K e. J ) /\ X e. W ) ) -> ( X e. ( 0 ..^ N ) -> ( ( X + K ) mod N ) =/= X ) ) |
62 |
37 61
|
sylbird |
|- ( ( X = x /\ ( ( N = 5 /\ K e. J ) /\ X e. W ) ) -> ( x e. ( 0 ..^ N ) -> ( ( X + K ) mod N ) =/= X ) ) |
63 |
62
|
impr |
|- ( ( X = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X + K ) mod N ) =/= X ) |
64 |
|
neeq2 |
|- ( X = x -> ( ( ( X + K ) mod N ) =/= X <-> ( ( X + K ) mod N ) =/= x ) ) |
65 |
64
|
adantr |
|- ( ( X = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( X + K ) mod N ) =/= X <-> ( ( X + K ) mod N ) =/= x ) ) |
66 |
63 65
|
mpbid |
|- ( ( X = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X + K ) mod N ) =/= x ) |
67 |
66
|
orcd |
|- ( ( X = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( X + K ) mod N ) =/= x \/ X =/= x ) ) |
68 |
67
|
ex |
|- ( X = x -> ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= x \/ X =/= x ) ) ) |
69 |
|
olc |
|- ( X =/= x -> ( ( ( X + K ) mod N ) =/= x \/ X =/= x ) ) |
70 |
69
|
a1d |
|- ( X =/= x -> ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= x \/ X =/= x ) ) ) |
71 |
68 70
|
pm2.61ine |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= x \/ X =/= x ) ) |
72 |
14 15
|
opthne |
|- ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. <-> ( 1 =/= 1 \/ ( ( X + K ) mod N ) =/= x ) ) |
73 |
|
neirr |
|- -. 1 =/= 1 |
74 |
73
|
biorfi |
|- ( ( ( X + K ) mod N ) =/= x <-> ( 1 =/= 1 \/ ( ( X + K ) mod N ) =/= x ) ) |
75 |
72 74
|
bitr4i |
|- ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. <-> ( ( X + K ) mod N ) =/= x ) |
76 |
75
|
a1i |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. <-> ( ( X + K ) mod N ) =/= x ) ) |
77 |
|
opthneg |
|- ( ( 0 e. _V /\ X e. W ) -> ( <. 0 , X >. =/= <. 0 , x >. <-> ( 0 =/= 0 \/ X =/= x ) ) ) |
78 |
31 77
|
syl |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , X >. =/= <. 0 , x >. <-> ( 0 =/= 0 \/ X =/= x ) ) ) |
79 |
|
neirr |
|- -. 0 =/= 0 |
80 |
79
|
biorfi |
|- ( X =/= x <-> ( 0 =/= 0 \/ X =/= x ) ) |
81 |
78 80
|
bitr4di |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , X >. =/= <. 0 , x >. <-> X =/= x ) ) |
82 |
76 81
|
orbi12d |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 0 , X >. =/= <. 0 , x >. ) <-> ( ( ( X + K ) mod N ) =/= x \/ X =/= x ) ) ) |
83 |
71 82
|
mpbird |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 0 , X >. =/= <. 0 , x >. ) ) |
84 |
35 83
|
jca |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. \/ <. 0 , X >. =/= <. 1 , x >. ) /\ ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 0 , X >. =/= <. 0 , x >. ) ) ) |
85 |
|
opex |
|- <. 1 , x >. e. _V |
86 |
8 85
|
pm3.2i |
|- ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) |
87 |
7 86
|
pm3.2i |
|- ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 0 , X >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) ) |
88 |
|
prneimg2 |
|- ( ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 0 , X >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. \/ <. 0 , X >. =/= <. 1 , x >. ) /\ ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 0 , X >. =/= <. 0 , x >. ) ) ) ) |
89 |
87 88
|
mp1i |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. \/ <. 0 , X >. =/= <. 1 , x >. ) /\ ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 0 , X >. =/= <. 0 , x >. ) ) ) ) |
90 |
84 89
|
mpbird |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 1 , x >. } ) |
91 |
|
opex |
|- <. 1 , ( ( x + K ) mod N ) >. e. _V |
92 |
85 91
|
pm3.2i |
|- ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V ) |
93 |
7 92
|
pm3.2i |
|- ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 0 , X >. e. _V ) /\ ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V ) ) |
94 |
26
|
a1i |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> 0 =/= 1 ) |
95 |
94
|
orcd |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( 0 =/= 1 \/ X =/= ( ( x + K ) mod N ) ) ) |
96 |
|
opthneg |
|- ( ( 0 e. _V /\ X e. W ) -> ( <. 0 , X >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( 0 =/= 1 \/ X =/= ( ( x + K ) mod N ) ) ) ) |
97 |
31 96
|
syl |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , X >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( 0 =/= 1 \/ X =/= ( ( x + K ) mod N ) ) ) ) |
98 |
95 97
|
mpbird |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> <. 0 , X >. =/= <. 1 , ( ( x + K ) mod N ) >. ) |
99 |
34 98
|
jca |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , X >. =/= <. 1 , x >. /\ <. 0 , X >. =/= <. 1 , ( ( x + K ) mod N ) >. ) ) |
100 |
99
|
olcd |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. /\ <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) \/ ( <. 0 , X >. =/= <. 1 , x >. /\ <. 0 , X >. =/= <. 1 , ( ( x + K ) mod N ) >. ) ) ) |
101 |
|
prneimg |
|- ( ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 0 , X >. e. _V ) /\ ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V ) ) -> ( ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. /\ <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) \/ ( <. 0 , X >. =/= <. 1 , x >. /\ <. 0 , X >. =/= <. 1 , ( ( x + K ) mod N ) >. ) ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
102 |
93 100 101
|
mpsyl |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) |
103 |
25 90 102
|
3jca |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. W ) /\ x e. ( 0 ..^ N ) ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
104 |
103
|
ralrimiva |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. W ) -> A. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
105 |
|
ralnex |
|- ( A. x e. ( 0 ..^ N ) -. ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> -. E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
106 |
|
3ioran |
|- ( -. ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( -. { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ -. { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 1 , x >. } /\ -. { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
107 |
|
df-ne |
|- ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } <-> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) |
108 |
|
df-ne |
|- ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 1 , x >. } ) |
109 |
|
df-ne |
|- ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } <-> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) |
110 |
107 108 109
|
3anbi123i |
|- ( ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( -. { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ -. { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 1 , x >. } /\ -. { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
111 |
106 110
|
bitr4i |
|- ( -. ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
112 |
111
|
ralbii |
|- ( A. x e. ( 0 ..^ N ) -. ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> A. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
113 |
105 112
|
bitr3i |
|- ( -. E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> A. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
114 |
104 113
|
sylibr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. W ) -> -. E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
115 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
116 |
|
eleq1 |
|- ( N = 5 -> ( N e. ( ZZ>= ` 3 ) <-> 5 e. ( ZZ>= ` 3 ) ) ) |
117 |
115 116
|
mpbiri |
|- ( N = 5 -> N e. ( ZZ>= ` 3 ) ) |
118 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
119 |
118 1 2 4
|
gpgedgel |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } e. E <-> E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
120 |
117 119
|
sylan |
|- ( ( N = 5 /\ K e. J ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } e. E <-> E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
121 |
120
|
adantr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. W ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } e. E <-> E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
122 |
114 121
|
mtbird |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. W ) -> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } e. E ) |
123 |
|
df-nel |
|- ( { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } e/ E <-> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } e. E ) |
124 |
122 123
|
sylibr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. W ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 0 , X >. } e/ E ) |