| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpg5nbgrvtx03starlem1.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
| 2 |
|
gpg5nbgrvtx03starlem1.g |
|- G = ( N gPetersenGr K ) |
| 3 |
|
gpg5nbgrvtx03starlem1.v |
|- V = ( Vtx ` G ) |
| 4 |
|
gpg5nbgrvtx03starlem1.e |
|- E = ( Edg ` G ) |
| 5 |
|
opex |
|- <. 1 , ( ( X + K ) mod N ) >. e. _V |
| 6 |
|
opex |
|- <. 1 , ( ( X - K ) mod N ) >. e. _V |
| 7 |
5 6
|
pm3.2i |
|- ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 1 , ( ( X - K ) mod N ) >. e. _V ) |
| 8 |
|
opex |
|- <. 0 , x >. e. _V |
| 9 |
|
opex |
|- <. 0 , ( ( x + 1 ) mod N ) >. e. _V |
| 10 |
8 9
|
pm3.2i |
|- ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V ) |
| 11 |
7 10
|
pm3.2i |
|- ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 1 , ( ( X - K ) mod N ) >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V ) ) |
| 12 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 13 |
12
|
orci |
|- ( 1 =/= 0 \/ ( ( X + K ) mod N ) =/= x ) |
| 14 |
|
1ex |
|- 1 e. _V |
| 15 |
|
ovex |
|- ( ( X + K ) mod N ) e. _V |
| 16 |
14 15
|
opthne |
|- ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. <-> ( 1 =/= 0 \/ ( ( X + K ) mod N ) =/= x ) ) |
| 17 |
13 16
|
mpbir |
|- <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. |
| 18 |
12
|
orci |
|- ( 1 =/= 0 \/ ( ( X + K ) mod N ) =/= ( ( x + 1 ) mod N ) ) |
| 19 |
14 15
|
opthne |
|- ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. <-> ( 1 =/= 0 \/ ( ( X + K ) mod N ) =/= ( ( x + 1 ) mod N ) ) ) |
| 20 |
18 19
|
mpbir |
|- <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. |
| 21 |
17 20
|
pm3.2i |
|- ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) |
| 22 |
21
|
a1i |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) ) |
| 23 |
22
|
orcd |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) \/ ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) ) ) |
| 24 |
|
prneimg |
|- ( ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 1 , ( ( X - K ) mod N ) >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V ) ) -> ( ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) \/ ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) ) |
| 25 |
11 23 24
|
mpsyl |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) |
| 26 |
17
|
orci |
|- ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) |
| 27 |
26
|
a1i |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) ) |
| 28 |
12
|
orci |
|- ( 1 =/= 0 \/ ( ( X - K ) mod N ) =/= x ) |
| 29 |
|
ovex |
|- ( ( X - K ) mod N ) e. _V |
| 30 |
14 29
|
opthne |
|- ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. <-> ( 1 =/= 0 \/ ( ( X - K ) mod N ) =/= x ) ) |
| 31 |
28 30
|
mpbir |
|- <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. |
| 32 |
31
|
olci |
|- ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. ) |
| 33 |
32
|
a1i |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. ) ) |
| 34 |
|
opex |
|- <. 1 , x >. e. _V |
| 35 |
8 34
|
pm3.2i |
|- ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) |
| 36 |
7 35
|
pm3.2i |
|- ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 1 , ( ( X - K ) mod N ) >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) ) |
| 37 |
|
prneimg2 |
|- ( ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 1 , ( ( X - K ) mod N ) >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) /\ ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. ) ) ) ) |
| 38 |
36 37
|
mp1i |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) /\ ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. ) ) ) ) |
| 39 |
27 33 38
|
mpbir2and |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } ) |
| 40 |
|
fvoveq1 |
|- ( N = 5 -> ( |^ ` ( N / 2 ) ) = ( |^ ` ( 5 / 2 ) ) ) |
| 41 |
|
ceil5half3 |
|- ( |^ ` ( 5 / 2 ) ) = 3 |
| 42 |
40 41
|
eqtrdi |
|- ( N = 5 -> ( |^ ` ( N / 2 ) ) = 3 ) |
| 43 |
42
|
oveq2d |
|- ( N = 5 -> ( 1 ..^ ( |^ ` ( N / 2 ) ) ) = ( 1 ..^ 3 ) ) |
| 44 |
1 43
|
eqtrid |
|- ( N = 5 -> J = ( 1 ..^ 3 ) ) |
| 45 |
44
|
eleq2d |
|- ( N = 5 -> ( K e. J <-> K e. ( 1 ..^ 3 ) ) ) |
| 46 |
45
|
biimpa |
|- ( ( N = 5 /\ K e. J ) -> K e. ( 1 ..^ 3 ) ) |
| 47 |
46
|
anim1ci |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( X e. ZZ /\ K e. ( 1 ..^ 3 ) ) ) |
| 48 |
|
minusmodnep2tmod |
|- ( ( X e. ZZ /\ K e. ( 1 ..^ 3 ) ) -> ( ( X - K ) mod 5 ) =/= ( ( X + ( 2 x. K ) ) mod 5 ) ) |
| 49 |
47 48
|
syl |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X - K ) mod 5 ) =/= ( ( X + ( 2 x. K ) ) mod 5 ) ) |
| 50 |
|
oveq2 |
|- ( N = 5 -> ( ( X - K ) mod N ) = ( ( X - K ) mod 5 ) ) |
| 51 |
|
oveq2 |
|- ( N = 5 -> ( ( X + ( 2 x. K ) ) mod N ) = ( ( X + ( 2 x. K ) ) mod 5 ) ) |
| 52 |
50 51
|
neeq12d |
|- ( N = 5 -> ( ( ( X - K ) mod N ) =/= ( ( X + ( 2 x. K ) ) mod N ) <-> ( ( X - K ) mod 5 ) =/= ( ( X + ( 2 x. K ) ) mod 5 ) ) ) |
| 53 |
52
|
ad2antrr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( ( X - K ) mod N ) =/= ( ( X + ( 2 x. K ) ) mod N ) <-> ( ( X - K ) mod 5 ) =/= ( ( X + ( 2 x. K ) ) mod 5 ) ) ) |
| 54 |
49 53
|
mpbird |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X - K ) mod N ) =/= ( ( X + ( 2 x. K ) ) mod N ) ) |
| 55 |
|
zcn |
|- ( X e. ZZ -> X e. CC ) |
| 56 |
55
|
adantl |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> X e. CC ) |
| 57 |
|
elfzoelz |
|- ( K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) -> K e. ZZ ) |
| 58 |
57 1
|
eleq2s |
|- ( K e. J -> K e. ZZ ) |
| 59 |
58
|
zcnd |
|- ( K e. J -> K e. CC ) |
| 60 |
59
|
ad2antlr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> K e. CC ) |
| 61 |
56 60 60
|
addassd |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X + K ) + K ) = ( X + ( K + K ) ) ) |
| 62 |
60
|
2timesd |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( 2 x. K ) = ( K + K ) ) |
| 63 |
62
|
eqcomd |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( K + K ) = ( 2 x. K ) ) |
| 64 |
63
|
oveq2d |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( X + ( K + K ) ) = ( X + ( 2 x. K ) ) ) |
| 65 |
61 64
|
eqtrd |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X + K ) + K ) = ( X + ( 2 x. K ) ) ) |
| 66 |
65
|
oveq1d |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( ( X + K ) + K ) mod N ) = ( ( X + ( 2 x. K ) ) mod N ) ) |
| 67 |
54 66
|
neeqtrrd |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X - K ) mod N ) =/= ( ( ( X + K ) + K ) mod N ) ) |
| 68 |
|
zre |
|- ( X e. ZZ -> X e. RR ) |
| 69 |
68
|
adantl |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> X e. RR ) |
| 70 |
58
|
zred |
|- ( K e. J -> K e. RR ) |
| 71 |
70
|
ad2antlr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> K e. RR ) |
| 72 |
69 71
|
readdcld |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( X + K ) e. RR ) |
| 73 |
|
5nn |
|- 5 e. NN |
| 74 |
|
eleq1 |
|- ( N = 5 -> ( N e. NN <-> 5 e. NN ) ) |
| 75 |
73 74
|
mpbiri |
|- ( N = 5 -> N e. NN ) |
| 76 |
75
|
nnrpd |
|- ( N = 5 -> N e. RR+ ) |
| 77 |
76
|
ad2antrr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> N e. RR+ ) |
| 78 |
|
modaddmod |
|- ( ( ( X + K ) e. RR /\ K e. RR /\ N e. RR+ ) -> ( ( ( ( X + K ) mod N ) + K ) mod N ) = ( ( ( X + K ) + K ) mod N ) ) |
| 79 |
72 71 77 78
|
syl3anc |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( ( ( X + K ) mod N ) + K ) mod N ) = ( ( ( X + K ) + K ) mod N ) ) |
| 80 |
67 79
|
neeqtrrd |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X - K ) mod N ) =/= ( ( ( ( X + K ) mod N ) + K ) mod N ) ) |
| 81 |
80
|
ad2antrl |
|- ( ( ( ( X + K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X - K ) mod N ) =/= ( ( ( ( X + K ) mod N ) + K ) mod N ) ) |
| 82 |
|
oveq1 |
|- ( ( ( X + K ) mod N ) = x -> ( ( ( X + K ) mod N ) + K ) = ( x + K ) ) |
| 83 |
82
|
oveq1d |
|- ( ( ( X + K ) mod N ) = x -> ( ( ( ( X + K ) mod N ) + K ) mod N ) = ( ( x + K ) mod N ) ) |
| 84 |
83
|
adantr |
|- ( ( ( ( X + K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( ( X + K ) mod N ) + K ) mod N ) = ( ( x + K ) mod N ) ) |
| 85 |
81 84
|
neeqtrd |
|- ( ( ( ( X + K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) |
| 86 |
85
|
olcd |
|- ( ( ( ( X + K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( X + K ) mod N ) =/= x \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) ) |
| 87 |
86
|
ex |
|- ( ( ( X + K ) mod N ) = x -> ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= x \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) ) ) |
| 88 |
|
orc |
|- ( ( ( X + K ) mod N ) =/= x -> ( ( ( X + K ) mod N ) =/= x \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) ) |
| 89 |
88
|
a1d |
|- ( ( ( X + K ) mod N ) =/= x -> ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= x \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) ) ) |
| 90 |
87 89
|
pm2.61ine |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= x \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) ) |
| 91 |
14 15
|
opthne |
|- ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. <-> ( 1 =/= 1 \/ ( ( X + K ) mod N ) =/= x ) ) |
| 92 |
|
neirr |
|- -. 1 =/= 1 |
| 93 |
92
|
biorfi |
|- ( ( ( X + K ) mod N ) =/= x <-> ( 1 =/= 1 \/ ( ( X + K ) mod N ) =/= x ) ) |
| 94 |
91 93
|
bitr4i |
|- ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. <-> ( ( X + K ) mod N ) =/= x ) |
| 95 |
94
|
a1i |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. <-> ( ( X + K ) mod N ) =/= x ) ) |
| 96 |
14 29
|
opthne |
|- ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( 1 =/= 1 \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) ) |
| 97 |
92
|
biorfi |
|- ( ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) <-> ( 1 =/= 1 \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) ) |
| 98 |
96 97
|
bitr4i |
|- ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) |
| 99 |
98
|
a1i |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) ) |
| 100 |
95 99
|
orbi12d |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) <-> ( ( ( X + K ) mod N ) =/= x \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) ) ) |
| 101 |
90 100
|
mpbird |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) ) |
| 102 |
|
2z |
|- 2 e. ZZ |
| 103 |
73
|
nnzi |
|- 5 e. ZZ |
| 104 |
|
2re |
|- 2 e. RR |
| 105 |
|
5re |
|- 5 e. RR |
| 106 |
|
2lt5 |
|- 2 < 5 |
| 107 |
104 105 106
|
ltleii |
|- 2 <_ 5 |
| 108 |
|
eluz2 |
|- ( 5 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 5 e. ZZ /\ 2 <_ 5 ) ) |
| 109 |
102 103 107 108
|
mpbir3an |
|- 5 e. ( ZZ>= ` 2 ) |
| 110 |
|
eleq1 |
|- ( N = 5 -> ( N e. ( ZZ>= ` 2 ) <-> 5 e. ( ZZ>= ` 2 ) ) ) |
| 111 |
109 110
|
mpbiri |
|- ( N = 5 -> N e. ( ZZ>= ` 2 ) ) |
| 112 |
111
|
ad2antrr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> N e. ( ZZ>= ` 2 ) ) |
| 113 |
|
simpr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> X e. ZZ ) |
| 114 |
1
|
ceilhalfelfzo1 |
|- ( N e. NN -> ( K e. J -> K e. ( 1 ..^ N ) ) ) |
| 115 |
75 114
|
syl |
|- ( N = 5 -> ( K e. J -> K e. ( 1 ..^ N ) ) ) |
| 116 |
115
|
imp |
|- ( ( N = 5 /\ K e. J ) -> K e. ( 1 ..^ N ) ) |
| 117 |
116
|
adantr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> K e. ( 1 ..^ N ) ) |
| 118 |
|
zplusmodne |
|- ( ( N e. ( ZZ>= ` 2 ) /\ X e. ZZ /\ K e. ( 1 ..^ N ) ) -> ( ( X + K ) mod N ) =/= ( X mod N ) ) |
| 119 |
112 113 117 118
|
syl3anc |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X + K ) mod N ) =/= ( X mod N ) ) |
| 120 |
59
|
adantl |
|- ( ( N = 5 /\ K e. J ) -> K e. CC ) |
| 121 |
|
npcan |
|- ( ( X e. CC /\ K e. CC ) -> ( ( X - K ) + K ) = X ) |
| 122 |
55 120 121
|
syl2anr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X - K ) + K ) = X ) |
| 123 |
122
|
oveq1d |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( ( X - K ) + K ) mod N ) = ( X mod N ) ) |
| 124 |
119 123
|
neeqtrrd |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X + K ) mod N ) =/= ( ( ( X - K ) + K ) mod N ) ) |
| 125 |
57
|
zred |
|- ( K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) -> K e. RR ) |
| 126 |
125 1
|
eleq2s |
|- ( K e. J -> K e. RR ) |
| 127 |
126
|
ad2antlr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> K e. RR ) |
| 128 |
69 127
|
resubcld |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( X - K ) e. RR ) |
| 129 |
|
5rp |
|- 5 e. RR+ |
| 130 |
|
eleq1 |
|- ( N = 5 -> ( N e. RR+ <-> 5 e. RR+ ) ) |
| 131 |
129 130
|
mpbiri |
|- ( N = 5 -> N e. RR+ ) |
| 132 |
131
|
ad2antrr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> N e. RR+ ) |
| 133 |
|
modaddmod |
|- ( ( ( X - K ) e. RR /\ K e. RR /\ N e. RR+ ) -> ( ( ( ( X - K ) mod N ) + K ) mod N ) = ( ( ( X - K ) + K ) mod N ) ) |
| 134 |
128 127 132 133
|
syl3anc |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( ( ( X - K ) mod N ) + K ) mod N ) = ( ( ( X - K ) + K ) mod N ) ) |
| 135 |
124 134
|
neeqtrrd |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X + K ) mod N ) =/= ( ( ( ( X - K ) mod N ) + K ) mod N ) ) |
| 136 |
135
|
ad2antrl |
|- ( ( ( ( X - K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X + K ) mod N ) =/= ( ( ( ( X - K ) mod N ) + K ) mod N ) ) |
| 137 |
|
oveq1 |
|- ( ( ( X - K ) mod N ) = x -> ( ( ( X - K ) mod N ) + K ) = ( x + K ) ) |
| 138 |
137
|
oveq1d |
|- ( ( ( X - K ) mod N ) = x -> ( ( ( ( X - K ) mod N ) + K ) mod N ) = ( ( x + K ) mod N ) ) |
| 139 |
138
|
adantr |
|- ( ( ( ( X - K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( ( X - K ) mod N ) + K ) mod N ) = ( ( x + K ) mod N ) ) |
| 140 |
136 139
|
neeqtrd |
|- ( ( ( ( X - K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) ) |
| 141 |
140
|
orcd |
|- ( ( ( ( X - K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) \/ ( ( X - K ) mod N ) =/= x ) ) |
| 142 |
141
|
ex |
|- ( ( ( X - K ) mod N ) = x -> ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) \/ ( ( X - K ) mod N ) =/= x ) ) ) |
| 143 |
|
olc |
|- ( ( ( X - K ) mod N ) =/= x -> ( ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) \/ ( ( X - K ) mod N ) =/= x ) ) |
| 144 |
143
|
a1d |
|- ( ( ( X - K ) mod N ) =/= x -> ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) \/ ( ( X - K ) mod N ) =/= x ) ) ) |
| 145 |
142 144
|
pm2.61ine |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) \/ ( ( X - K ) mod N ) =/= x ) ) |
| 146 |
14 15
|
opthne |
|- ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( 1 =/= 1 \/ ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) ) ) |
| 147 |
92
|
biorfi |
|- ( ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) <-> ( 1 =/= 1 \/ ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) ) ) |
| 148 |
146 147
|
bitr4i |
|- ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) ) |
| 149 |
148
|
a1i |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) ) ) |
| 150 |
14 29
|
opthne |
|- ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. <-> ( 1 =/= 1 \/ ( ( X - K ) mod N ) =/= x ) ) |
| 151 |
92
|
biorfi |
|- ( ( ( X - K ) mod N ) =/= x <-> ( 1 =/= 1 \/ ( ( X - K ) mod N ) =/= x ) ) |
| 152 |
150 151
|
bitr4i |
|- ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. <-> ( ( X - K ) mod N ) =/= x ) |
| 153 |
152
|
a1i |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. <-> ( ( X - K ) mod N ) =/= x ) ) |
| 154 |
149 153
|
orbi12d |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) <-> ( ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) \/ ( ( X - K ) mod N ) =/= x ) ) ) |
| 155 |
145 154
|
mpbird |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) ) |
| 156 |
|
opex |
|- <. 1 , ( ( x + K ) mod N ) >. e. _V |
| 157 |
34 156
|
pm3.2i |
|- ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V ) |
| 158 |
7 157
|
pm3.2i |
|- ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 1 , ( ( X - K ) mod N ) >. e. _V ) /\ ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V ) ) |
| 159 |
|
prneimg2 |
|- ( ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 1 , ( ( X - K ) mod N ) >. e. _V ) /\ ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V ) ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } <-> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) /\ ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) ) ) ) |
| 160 |
158 159
|
mp1i |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } <-> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) /\ ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) ) ) ) |
| 161 |
101 155 160
|
mpbir2and |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) |
| 162 |
25 39 161
|
3jca |
|- ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
| 163 |
162
|
ralrimiva |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> A. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
| 164 |
|
ralnex |
|- ( A. x e. ( 0 ..^ N ) -. ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> -. E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
| 165 |
|
3ioran |
|- ( -. ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } /\ -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
| 166 |
|
df-ne |
|- ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } <-> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) |
| 167 |
|
df-ne |
|- ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } ) |
| 168 |
|
df-ne |
|- ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } <-> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) |
| 169 |
166 167 168
|
3anbi123i |
|- ( ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } /\ -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
| 170 |
165 169
|
bitr4i |
|- ( -. ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
| 171 |
170
|
ralbii |
|- ( A. x e. ( 0 ..^ N ) -. ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> A. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
| 172 |
164 171
|
bitr3i |
|- ( -. E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> A. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
| 173 |
163 172
|
sylibr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> -. E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
| 174 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
| 175 |
|
eleq1 |
|- ( N = 5 -> ( N e. ( ZZ>= ` 3 ) <-> 5 e. ( ZZ>= ` 3 ) ) ) |
| 176 |
174 175
|
mpbiri |
|- ( N = 5 -> N e. ( ZZ>= ` 3 ) ) |
| 177 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
| 178 |
177 1 2 4
|
gpgedgel |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e. E <-> E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
| 179 |
176 178
|
sylan |
|- ( ( N = 5 /\ K e. J ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e. E <-> E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
| 180 |
179
|
adantr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e. E <-> E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
| 181 |
173 180
|
mtbird |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e. E ) |
| 182 |
|
df-nel |
|- ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e/ E <-> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e. E ) |
| 183 |
181 182
|
sylibr |
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e/ E ) |