Metamath Proof Explorer


Theorem gpg5nbgrvtx13starlem2

Description: Lemma 2 for gpg5nbgr3star . (Contributed by AV, 8-Sep-2025)

Ref Expression
Hypotheses gpg5nbgrvtx03starlem1.j
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
gpg5nbgrvtx03starlem1.g
|- G = ( N gPetersenGr K )
gpg5nbgrvtx03starlem1.v
|- V = ( Vtx ` G )
gpg5nbgrvtx03starlem1.e
|- E = ( Edg ` G )
Assertion gpg5nbgrvtx13starlem2
|- ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e/ E )

Proof

Step Hyp Ref Expression
1 gpg5nbgrvtx03starlem1.j
 |-  J = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
2 gpg5nbgrvtx03starlem1.g
 |-  G = ( N gPetersenGr K )
3 gpg5nbgrvtx03starlem1.v
 |-  V = ( Vtx ` G )
4 gpg5nbgrvtx03starlem1.e
 |-  E = ( Edg ` G )
5 opex
 |-  <. 1 , ( ( X + K ) mod N ) >. e. _V
6 opex
 |-  <. 1 , ( ( X - K ) mod N ) >. e. _V
7 5 6 pm3.2i
 |-  ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 1 , ( ( X - K ) mod N ) >. e. _V )
8 opex
 |-  <. 0 , x >. e. _V
9 opex
 |-  <. 0 , ( ( x + 1 ) mod N ) >. e. _V
10 8 9 pm3.2i
 |-  ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V )
11 7 10 pm3.2i
 |-  ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 1 , ( ( X - K ) mod N ) >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V ) )
12 ax-1ne0
 |-  1 =/= 0
13 12 orci
 |-  ( 1 =/= 0 \/ ( ( X + K ) mod N ) =/= x )
14 1ex
 |-  1 e. _V
15 ovex
 |-  ( ( X + K ) mod N ) e. _V
16 14 15 opthne
 |-  ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. <-> ( 1 =/= 0 \/ ( ( X + K ) mod N ) =/= x ) )
17 13 16 mpbir
 |-  <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >.
18 12 orci
 |-  ( 1 =/= 0 \/ ( ( X + K ) mod N ) =/= ( ( x + 1 ) mod N ) )
19 14 15 opthne
 |-  ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. <-> ( 1 =/= 0 \/ ( ( X + K ) mod N ) =/= ( ( x + 1 ) mod N ) ) )
20 18 19 mpbir
 |-  <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >.
21 17 20 pm3.2i
 |-  ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. )
22 21 a1i
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) )
23 22 orcd
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) \/ ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) ) )
24 prneimg
 |-  ( ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 1 , ( ( X - K ) mod N ) >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V ) ) -> ( ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) \/ ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. /\ <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) )
25 11 23 24 mpsyl
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } )
26 17 orci
 |-  ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. )
27 26 a1i
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) )
28 12 orci
 |-  ( 1 =/= 0 \/ ( ( X - K ) mod N ) =/= x )
29 ovex
 |-  ( ( X - K ) mod N ) e. _V
30 14 29 opthne
 |-  ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. <-> ( 1 =/= 0 \/ ( ( X - K ) mod N ) =/= x ) )
31 28 30 mpbir
 |-  <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >.
32 31 olci
 |-  ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. )
33 32 a1i
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. ) )
34 opex
 |-  <. 1 , x >. e. _V
35 8 34 pm3.2i
 |-  ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V )
36 7 35 pm3.2i
 |-  ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 1 , ( ( X - K ) mod N ) >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) )
37 prneimg2
 |-  ( ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 1 , ( ( X - K ) mod N ) >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) /\ ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. ) ) ) )
38 36 37 mp1i
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 0 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) /\ ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 0 , x >. ) ) ) )
39 27 33 38 mpbir2and
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } )
40 fvoveq1
 |-  ( N = 5 -> ( |^ ` ( N / 2 ) ) = ( |^ ` ( 5 / 2 ) ) )
41 ceil5half3
 |-  ( |^ ` ( 5 / 2 ) ) = 3
42 40 41 eqtrdi
 |-  ( N = 5 -> ( |^ ` ( N / 2 ) ) = 3 )
43 42 oveq2d
 |-  ( N = 5 -> ( 1 ..^ ( |^ ` ( N / 2 ) ) ) = ( 1 ..^ 3 ) )
44 1 43 eqtrid
 |-  ( N = 5 -> J = ( 1 ..^ 3 ) )
45 44 eleq2d
 |-  ( N = 5 -> ( K e. J <-> K e. ( 1 ..^ 3 ) ) )
46 45 biimpa
 |-  ( ( N = 5 /\ K e. J ) -> K e. ( 1 ..^ 3 ) )
47 46 anim1ci
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( X e. ZZ /\ K e. ( 1 ..^ 3 ) ) )
48 minusmodnep2tmod
 |-  ( ( X e. ZZ /\ K e. ( 1 ..^ 3 ) ) -> ( ( X - K ) mod 5 ) =/= ( ( X + ( 2 x. K ) ) mod 5 ) )
49 47 48 syl
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X - K ) mod 5 ) =/= ( ( X + ( 2 x. K ) ) mod 5 ) )
50 oveq2
 |-  ( N = 5 -> ( ( X - K ) mod N ) = ( ( X - K ) mod 5 ) )
51 oveq2
 |-  ( N = 5 -> ( ( X + ( 2 x. K ) ) mod N ) = ( ( X + ( 2 x. K ) ) mod 5 ) )
52 50 51 neeq12d
 |-  ( N = 5 -> ( ( ( X - K ) mod N ) =/= ( ( X + ( 2 x. K ) ) mod N ) <-> ( ( X - K ) mod 5 ) =/= ( ( X + ( 2 x. K ) ) mod 5 ) ) )
53 52 ad2antrr
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( ( X - K ) mod N ) =/= ( ( X + ( 2 x. K ) ) mod N ) <-> ( ( X - K ) mod 5 ) =/= ( ( X + ( 2 x. K ) ) mod 5 ) ) )
54 49 53 mpbird
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X - K ) mod N ) =/= ( ( X + ( 2 x. K ) ) mod N ) )
55 zcn
 |-  ( X e. ZZ -> X e. CC )
56 55 adantl
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> X e. CC )
57 elfzoelz
 |-  ( K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) -> K e. ZZ )
58 57 1 eleq2s
 |-  ( K e. J -> K e. ZZ )
59 58 zcnd
 |-  ( K e. J -> K e. CC )
60 59 ad2antlr
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> K e. CC )
61 56 60 60 addassd
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X + K ) + K ) = ( X + ( K + K ) ) )
62 60 2timesd
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( 2 x. K ) = ( K + K ) )
63 62 eqcomd
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( K + K ) = ( 2 x. K ) )
64 63 oveq2d
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( X + ( K + K ) ) = ( X + ( 2 x. K ) ) )
65 61 64 eqtrd
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X + K ) + K ) = ( X + ( 2 x. K ) ) )
66 65 oveq1d
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( ( X + K ) + K ) mod N ) = ( ( X + ( 2 x. K ) ) mod N ) )
67 54 66 neeqtrrd
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X - K ) mod N ) =/= ( ( ( X + K ) + K ) mod N ) )
68 zre
 |-  ( X e. ZZ -> X e. RR )
69 68 adantl
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> X e. RR )
70 58 zred
 |-  ( K e. J -> K e. RR )
71 70 ad2antlr
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> K e. RR )
72 69 71 readdcld
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( X + K ) e. RR )
73 5nn
 |-  5 e. NN
74 eleq1
 |-  ( N = 5 -> ( N e. NN <-> 5 e. NN ) )
75 73 74 mpbiri
 |-  ( N = 5 -> N e. NN )
76 75 nnrpd
 |-  ( N = 5 -> N e. RR+ )
77 76 ad2antrr
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> N e. RR+ )
78 modaddmod
 |-  ( ( ( X + K ) e. RR /\ K e. RR /\ N e. RR+ ) -> ( ( ( ( X + K ) mod N ) + K ) mod N ) = ( ( ( X + K ) + K ) mod N ) )
79 72 71 77 78 syl3anc
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( ( ( X + K ) mod N ) + K ) mod N ) = ( ( ( X + K ) + K ) mod N ) )
80 67 79 neeqtrrd
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X - K ) mod N ) =/= ( ( ( ( X + K ) mod N ) + K ) mod N ) )
81 80 ad2antrl
 |-  ( ( ( ( X + K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X - K ) mod N ) =/= ( ( ( ( X + K ) mod N ) + K ) mod N ) )
82 oveq1
 |-  ( ( ( X + K ) mod N ) = x -> ( ( ( X + K ) mod N ) + K ) = ( x + K ) )
83 82 oveq1d
 |-  ( ( ( X + K ) mod N ) = x -> ( ( ( ( X + K ) mod N ) + K ) mod N ) = ( ( x + K ) mod N ) )
84 83 adantr
 |-  ( ( ( ( X + K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( ( X + K ) mod N ) + K ) mod N ) = ( ( x + K ) mod N ) )
85 81 84 neeqtrd
 |-  ( ( ( ( X + K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) )
86 85 olcd
 |-  ( ( ( ( X + K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( X + K ) mod N ) =/= x \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) )
87 86 ex
 |-  ( ( ( X + K ) mod N ) = x -> ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= x \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) ) )
88 orc
 |-  ( ( ( X + K ) mod N ) =/= x -> ( ( ( X + K ) mod N ) =/= x \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) )
89 88 a1d
 |-  ( ( ( X + K ) mod N ) =/= x -> ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= x \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) ) )
90 87 89 pm2.61ine
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= x \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) )
91 14 15 opthne
 |-  ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. <-> ( 1 =/= 1 \/ ( ( X + K ) mod N ) =/= x ) )
92 neirr
 |-  -. 1 =/= 1
93 92 biorfi
 |-  ( ( ( X + K ) mod N ) =/= x <-> ( 1 =/= 1 \/ ( ( X + K ) mod N ) =/= x ) )
94 91 93 bitr4i
 |-  ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. <-> ( ( X + K ) mod N ) =/= x )
95 94 a1i
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. <-> ( ( X + K ) mod N ) =/= x ) )
96 14 29 opthne
 |-  ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( 1 =/= 1 \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) )
97 92 biorfi
 |-  ( ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) <-> ( 1 =/= 1 \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) )
98 96 97 bitr4i
 |-  ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) )
99 98 a1i
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) )
100 95 99 orbi12d
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) <-> ( ( ( X + K ) mod N ) =/= x \/ ( ( X - K ) mod N ) =/= ( ( x + K ) mod N ) ) ) )
101 90 100 mpbird
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) )
102 2z
 |-  2 e. ZZ
103 73 nnzi
 |-  5 e. ZZ
104 2re
 |-  2 e. RR
105 5re
 |-  5 e. RR
106 2lt5
 |-  2 < 5
107 104 105 106 ltleii
 |-  2 <_ 5
108 eluz2
 |-  ( 5 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 5 e. ZZ /\ 2 <_ 5 ) )
109 102 103 107 108 mpbir3an
 |-  5 e. ( ZZ>= ` 2 )
110 eleq1
 |-  ( N = 5 -> ( N e. ( ZZ>= ` 2 ) <-> 5 e. ( ZZ>= ` 2 ) ) )
111 109 110 mpbiri
 |-  ( N = 5 -> N e. ( ZZ>= ` 2 ) )
112 111 ad2antrr
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> N e. ( ZZ>= ` 2 ) )
113 simpr
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> X e. ZZ )
114 1 ceilhalfelfzo1
 |-  ( N e. NN -> ( K e. J -> K e. ( 1 ..^ N ) ) )
115 75 114 syl
 |-  ( N = 5 -> ( K e. J -> K e. ( 1 ..^ N ) ) )
116 115 imp
 |-  ( ( N = 5 /\ K e. J ) -> K e. ( 1 ..^ N ) )
117 116 adantr
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> K e. ( 1 ..^ N ) )
118 zplusmodne
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ X e. ZZ /\ K e. ( 1 ..^ N ) ) -> ( ( X + K ) mod N ) =/= ( X mod N ) )
119 112 113 117 118 syl3anc
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X + K ) mod N ) =/= ( X mod N ) )
120 59 adantl
 |-  ( ( N = 5 /\ K e. J ) -> K e. CC )
121 npcan
 |-  ( ( X e. CC /\ K e. CC ) -> ( ( X - K ) + K ) = X )
122 55 120 121 syl2anr
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X - K ) + K ) = X )
123 122 oveq1d
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( ( X - K ) + K ) mod N ) = ( X mod N ) )
124 119 123 neeqtrrd
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X + K ) mod N ) =/= ( ( ( X - K ) + K ) mod N ) )
125 57 zred
 |-  ( K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) -> K e. RR )
126 125 1 eleq2s
 |-  ( K e. J -> K e. RR )
127 126 ad2antlr
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> K e. RR )
128 69 127 resubcld
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( X - K ) e. RR )
129 5rp
 |-  5 e. RR+
130 eleq1
 |-  ( N = 5 -> ( N e. RR+ <-> 5 e. RR+ ) )
131 129 130 mpbiri
 |-  ( N = 5 -> N e. RR+ )
132 131 ad2antrr
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> N e. RR+ )
133 modaddmod
 |-  ( ( ( X - K ) e. RR /\ K e. RR /\ N e. RR+ ) -> ( ( ( ( X - K ) mod N ) + K ) mod N ) = ( ( ( X - K ) + K ) mod N ) )
134 128 127 132 133 syl3anc
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( ( ( X - K ) mod N ) + K ) mod N ) = ( ( ( X - K ) + K ) mod N ) )
135 124 134 neeqtrrd
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( ( X + K ) mod N ) =/= ( ( ( ( X - K ) mod N ) + K ) mod N ) )
136 135 ad2antrl
 |-  ( ( ( ( X - K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X + K ) mod N ) =/= ( ( ( ( X - K ) mod N ) + K ) mod N ) )
137 oveq1
 |-  ( ( ( X - K ) mod N ) = x -> ( ( ( X - K ) mod N ) + K ) = ( x + K ) )
138 137 oveq1d
 |-  ( ( ( X - K ) mod N ) = x -> ( ( ( ( X - K ) mod N ) + K ) mod N ) = ( ( x + K ) mod N ) )
139 138 adantr
 |-  ( ( ( ( X - K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( ( X - K ) mod N ) + K ) mod N ) = ( ( x + K ) mod N ) )
140 136 139 neeqtrd
 |-  ( ( ( ( X - K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) )
141 140 orcd
 |-  ( ( ( ( X - K ) mod N ) = x /\ ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) \/ ( ( X - K ) mod N ) =/= x ) )
142 141 ex
 |-  ( ( ( X - K ) mod N ) = x -> ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) \/ ( ( X - K ) mod N ) =/= x ) ) )
143 olc
 |-  ( ( ( X - K ) mod N ) =/= x -> ( ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) \/ ( ( X - K ) mod N ) =/= x ) )
144 143 a1d
 |-  ( ( ( X - K ) mod N ) =/= x -> ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) \/ ( ( X - K ) mod N ) =/= x ) ) )
145 142 144 pm2.61ine
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) \/ ( ( X - K ) mod N ) =/= x ) )
146 14 15 opthne
 |-  ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( 1 =/= 1 \/ ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) ) )
147 92 biorfi
 |-  ( ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) <-> ( 1 =/= 1 \/ ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) ) )
148 146 147 bitr4i
 |-  ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) )
149 148 a1i
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) ) )
150 14 29 opthne
 |-  ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. <-> ( 1 =/= 1 \/ ( ( X - K ) mod N ) =/= x ) )
151 92 biorfi
 |-  ( ( ( X - K ) mod N ) =/= x <-> ( 1 =/= 1 \/ ( ( X - K ) mod N ) =/= x ) )
152 150 151 bitr4i
 |-  ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. <-> ( ( X - K ) mod N ) =/= x )
153 152 a1i
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. <-> ( ( X - K ) mod N ) =/= x ) )
154 149 153 orbi12d
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) <-> ( ( ( X + K ) mod N ) =/= ( ( x + K ) mod N ) \/ ( ( X - K ) mod N ) =/= x ) ) )
155 145 154 mpbird
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) )
156 opex
 |-  <. 1 , ( ( x + K ) mod N ) >. e. _V
157 34 156 pm3.2i
 |-  ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V )
158 7 157 pm3.2i
 |-  ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 1 , ( ( X - K ) mod N ) >. e. _V ) /\ ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V ) )
159 prneimg2
 |-  ( ( ( <. 1 , ( ( X + K ) mod N ) >. e. _V /\ <. 1 , ( ( X - K ) mod N ) >. e. _V ) /\ ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V ) ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } <-> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) /\ ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) ) ) )
160 158 159 mp1i
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } <-> ( ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , x >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) /\ ( <. 1 , ( ( X + K ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. \/ <. 1 , ( ( X - K ) mod N ) >. =/= <. 1 , x >. ) ) ) )
161 101 155 160 mpbir2and
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } )
162 25 39 161 3jca
 |-  ( ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) )
163 162 ralrimiva
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> A. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) )
164 ralnex
 |-  ( A. x e. ( 0 ..^ N ) -. ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> -. E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) )
165 3ioran
 |-  ( -. ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } /\ -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) )
166 df-ne
 |-  ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } <-> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } )
167 df-ne
 |-  ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } )
168 df-ne
 |-  ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } <-> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } )
169 166 167 168 3anbi123i
 |-  ( ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } /\ -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) )
170 165 169 bitr4i
 |-  ( -. ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) )
171 170 ralbii
 |-  ( A. x e. ( 0 ..^ N ) -. ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> A. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) )
172 164 171 bitr3i
 |-  ( -. E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> A. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) )
173 163 172 sylibr
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> -. E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) )
174 5eluz3
 |-  5 e. ( ZZ>= ` 3 )
175 eleq1
 |-  ( N = 5 -> ( N e. ( ZZ>= ` 3 ) <-> 5 e. ( ZZ>= ` 3 ) ) )
176 174 175 mpbiri
 |-  ( N = 5 -> N e. ( ZZ>= ` 3 ) )
177 eqid
 |-  ( 0 ..^ N ) = ( 0 ..^ N )
178 177 1 2 4 gpgedgel
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e. E <-> E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) )
179 176 178 sylan
 |-  ( ( N = 5 /\ K e. J ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e. E <-> E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) )
180 179 adantr
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e. E <-> E. x e. ( 0 ..^ N ) ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) )
181 173 180 mtbird
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e. E )
182 df-nel
 |-  ( { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e/ E <-> -. { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e. E )
183 181 182 sylibr
 |-  ( ( ( N = 5 /\ K e. J ) /\ X e. ZZ ) -> { <. 1 , ( ( X + K ) mod N ) >. , <. 1 , ( ( X - K ) mod N ) >. } e/ E )