| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elpri |
|- ( B e. { 1 , 2 } -> ( B = 1 \/ B = 2 ) ) |
| 2 |
|
5ndvds3 |
|- -. 5 || 3 |
| 3 |
|
oveq2 |
|- ( B = 1 -> ( 3 x. B ) = ( 3 x. 1 ) ) |
| 4 |
|
3t1e3 |
|- ( 3 x. 1 ) = 3 |
| 5 |
3 4
|
eqtrdi |
|- ( B = 1 -> ( 3 x. B ) = 3 ) |
| 6 |
5
|
breq2d |
|- ( B = 1 -> ( 5 || ( 3 x. B ) <-> 5 || 3 ) ) |
| 7 |
2 6
|
mtbiri |
|- ( B = 1 -> -. 5 || ( 3 x. B ) ) |
| 8 |
|
5ndvds6 |
|- -. 5 || 6 |
| 9 |
|
oveq2 |
|- ( B = 2 -> ( 3 x. B ) = ( 3 x. 2 ) ) |
| 10 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
| 11 |
9 10
|
eqtrdi |
|- ( B = 2 -> ( 3 x. B ) = 6 ) |
| 12 |
11
|
breq2d |
|- ( B = 2 -> ( 5 || ( 3 x. B ) <-> 5 || 6 ) ) |
| 13 |
8 12
|
mtbiri |
|- ( B = 2 -> -. 5 || ( 3 x. B ) ) |
| 14 |
7 13
|
jaoi |
|- ( ( B = 1 \/ B = 2 ) -> -. 5 || ( 3 x. B ) ) |
| 15 |
1 14
|
syl |
|- ( B e. { 1 , 2 } -> -. 5 || ( 3 x. B ) ) |
| 16 |
|
fzo13pr |
|- ( 1 ..^ 3 ) = { 1 , 2 } |
| 17 |
15 16
|
eleq2s |
|- ( B e. ( 1 ..^ 3 ) -> -. 5 || ( 3 x. B ) ) |
| 18 |
17
|
adantl |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> -. 5 || ( 3 x. B ) ) |
| 19 |
|
5nn |
|- 5 e. NN |
| 20 |
19
|
a1i |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> 5 e. NN ) |
| 21 |
|
simpl |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> A e. ZZ ) |
| 22 |
|
2z |
|- 2 e. ZZ |
| 23 |
22
|
a1i |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> 2 e. ZZ ) |
| 24 |
|
elfzoelz |
|- ( B e. ( 1 ..^ 3 ) -> B e. ZZ ) |
| 25 |
24
|
adantl |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> B e. ZZ ) |
| 26 |
23 25
|
zmulcld |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> ( 2 x. B ) e. ZZ ) |
| 27 |
|
submodaddmod |
|- ( ( 5 e. NN /\ ( A e. ZZ /\ ( 2 x. B ) e. ZZ /\ B e. ZZ ) ) -> ( ( ( A + ( 2 x. B ) ) mod 5 ) = ( ( A - B ) mod 5 ) <-> ( ( A + ( ( 2 x. B ) + B ) ) mod 5 ) = ( A mod 5 ) ) ) |
| 28 |
20 21 26 25 27
|
syl13anc |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> ( ( ( A + ( 2 x. B ) ) mod 5 ) = ( ( A - B ) mod 5 ) <-> ( ( A + ( ( 2 x. B ) + B ) ) mod 5 ) = ( A mod 5 ) ) ) |
| 29 |
|
2cnd |
|- ( B e. ( 1 ..^ 3 ) -> 2 e. CC ) |
| 30 |
24
|
zcnd |
|- ( B e. ( 1 ..^ 3 ) -> B e. CC ) |
| 31 |
29 30
|
adddirp1d |
|- ( B e. ( 1 ..^ 3 ) -> ( ( 2 + 1 ) x. B ) = ( ( 2 x. B ) + B ) ) |
| 32 |
31
|
eqcomd |
|- ( B e. ( 1 ..^ 3 ) -> ( ( 2 x. B ) + B ) = ( ( 2 + 1 ) x. B ) ) |
| 33 |
32
|
adantl |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> ( ( 2 x. B ) + B ) = ( ( 2 + 1 ) x. B ) ) |
| 34 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 35 |
34
|
oveq1i |
|- ( ( 2 + 1 ) x. B ) = ( 3 x. B ) |
| 36 |
33 35
|
eqtrdi |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> ( ( 2 x. B ) + B ) = ( 3 x. B ) ) |
| 37 |
36
|
oveq2d |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> ( A + ( ( 2 x. B ) + B ) ) = ( A + ( 3 x. B ) ) ) |
| 38 |
37
|
oveq1d |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> ( ( A + ( ( 2 x. B ) + B ) ) mod 5 ) = ( ( A + ( 3 x. B ) ) mod 5 ) ) |
| 39 |
38
|
eqeq1d |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> ( ( ( A + ( ( 2 x. B ) + B ) ) mod 5 ) = ( A mod 5 ) <-> ( ( A + ( 3 x. B ) ) mod 5 ) = ( A mod 5 ) ) ) |
| 40 |
28 39
|
bitrd |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> ( ( ( A + ( 2 x. B ) ) mod 5 ) = ( ( A - B ) mod 5 ) <-> ( ( A + ( 3 x. B ) ) mod 5 ) = ( A mod 5 ) ) ) |
| 41 |
|
eqcom |
|- ( ( ( A - B ) mod 5 ) = ( ( A + ( 2 x. B ) ) mod 5 ) <-> ( ( A + ( 2 x. B ) ) mod 5 ) = ( ( A - B ) mod 5 ) ) |
| 42 |
41
|
a1i |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> ( ( ( A - B ) mod 5 ) = ( ( A + ( 2 x. B ) ) mod 5 ) <-> ( ( A + ( 2 x. B ) ) mod 5 ) = ( ( A - B ) mod 5 ) ) ) |
| 43 |
|
3z |
|- 3 e. ZZ |
| 44 |
43
|
a1i |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> 3 e. ZZ ) |
| 45 |
|
addmulmodb |
|- ( ( 5 e. NN /\ ( A e. ZZ /\ 3 e. ZZ /\ B e. ZZ ) ) -> ( 5 || ( 3 x. B ) <-> ( ( A + ( 3 x. B ) ) mod 5 ) = ( A mod 5 ) ) ) |
| 46 |
20 21 44 25 45
|
syl13anc |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> ( 5 || ( 3 x. B ) <-> ( ( A + ( 3 x. B ) ) mod 5 ) = ( A mod 5 ) ) ) |
| 47 |
40 42 46
|
3bitr4d |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> ( ( ( A - B ) mod 5 ) = ( ( A + ( 2 x. B ) ) mod 5 ) <-> 5 || ( 3 x. B ) ) ) |
| 48 |
18 47
|
mtbird |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> -. ( ( A - B ) mod 5 ) = ( ( A + ( 2 x. B ) ) mod 5 ) ) |
| 49 |
48
|
neqned |
|- ( ( A e. ZZ /\ B e. ( 1 ..^ 3 ) ) -> ( ( A - B ) mod 5 ) =/= ( ( A + ( 2 x. B ) ) mod 5 ) ) |