Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
⊢ ( 𝐵 ∈ { 1 , 2 } → ( 𝐵 = 1 ∨ 𝐵 = 2 ) ) |
2 |
|
5ndvds3 |
⊢ ¬ 5 ∥ 3 |
3 |
|
oveq2 |
⊢ ( 𝐵 = 1 → ( 3 · 𝐵 ) = ( 3 · 1 ) ) |
4 |
|
3t1e3 |
⊢ ( 3 · 1 ) = 3 |
5 |
3 4
|
eqtrdi |
⊢ ( 𝐵 = 1 → ( 3 · 𝐵 ) = 3 ) |
6 |
5
|
breq2d |
⊢ ( 𝐵 = 1 → ( 5 ∥ ( 3 · 𝐵 ) ↔ 5 ∥ 3 ) ) |
7 |
2 6
|
mtbiri |
⊢ ( 𝐵 = 1 → ¬ 5 ∥ ( 3 · 𝐵 ) ) |
8 |
|
5ndvds6 |
⊢ ¬ 5 ∥ 6 |
9 |
|
oveq2 |
⊢ ( 𝐵 = 2 → ( 3 · 𝐵 ) = ( 3 · 2 ) ) |
10 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
11 |
9 10
|
eqtrdi |
⊢ ( 𝐵 = 2 → ( 3 · 𝐵 ) = 6 ) |
12 |
11
|
breq2d |
⊢ ( 𝐵 = 2 → ( 5 ∥ ( 3 · 𝐵 ) ↔ 5 ∥ 6 ) ) |
13 |
8 12
|
mtbiri |
⊢ ( 𝐵 = 2 → ¬ 5 ∥ ( 3 · 𝐵 ) ) |
14 |
7 13
|
jaoi |
⊢ ( ( 𝐵 = 1 ∨ 𝐵 = 2 ) → ¬ 5 ∥ ( 3 · 𝐵 ) ) |
15 |
1 14
|
syl |
⊢ ( 𝐵 ∈ { 1 , 2 } → ¬ 5 ∥ ( 3 · 𝐵 ) ) |
16 |
|
fzo13pr |
⊢ ( 1 ..^ 3 ) = { 1 , 2 } |
17 |
15 16
|
eleq2s |
⊢ ( 𝐵 ∈ ( 1 ..^ 3 ) → ¬ 5 ∥ ( 3 · 𝐵 ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → ¬ 5 ∥ ( 3 · 𝐵 ) ) |
19 |
|
5nn |
⊢ 5 ∈ ℕ |
20 |
19
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → 5 ∈ ℕ ) |
21 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → 𝐴 ∈ ℤ ) |
22 |
|
2z |
⊢ 2 ∈ ℤ |
23 |
22
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → 2 ∈ ℤ ) |
24 |
|
elfzoelz |
⊢ ( 𝐵 ∈ ( 1 ..^ 3 ) → 𝐵 ∈ ℤ ) |
25 |
24
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → 𝐵 ∈ ℤ ) |
26 |
23 25
|
zmulcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → ( 2 · 𝐵 ) ∈ ℤ ) |
27 |
|
submodaddmod |
⊢ ( ( 5 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ ( 2 · 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) → ( ( ( 𝐴 + ( 2 · 𝐵 ) ) mod 5 ) = ( ( 𝐴 − 𝐵 ) mod 5 ) ↔ ( ( 𝐴 + ( ( 2 · 𝐵 ) + 𝐵 ) ) mod 5 ) = ( 𝐴 mod 5 ) ) ) |
28 |
20 21 26 25 27
|
syl13anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → ( ( ( 𝐴 + ( 2 · 𝐵 ) ) mod 5 ) = ( ( 𝐴 − 𝐵 ) mod 5 ) ↔ ( ( 𝐴 + ( ( 2 · 𝐵 ) + 𝐵 ) ) mod 5 ) = ( 𝐴 mod 5 ) ) ) |
29 |
|
2cnd |
⊢ ( 𝐵 ∈ ( 1 ..^ 3 ) → 2 ∈ ℂ ) |
30 |
24
|
zcnd |
⊢ ( 𝐵 ∈ ( 1 ..^ 3 ) → 𝐵 ∈ ℂ ) |
31 |
29 30
|
adddirp1d |
⊢ ( 𝐵 ∈ ( 1 ..^ 3 ) → ( ( 2 + 1 ) · 𝐵 ) = ( ( 2 · 𝐵 ) + 𝐵 ) ) |
32 |
31
|
eqcomd |
⊢ ( 𝐵 ∈ ( 1 ..^ 3 ) → ( ( 2 · 𝐵 ) + 𝐵 ) = ( ( 2 + 1 ) · 𝐵 ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → ( ( 2 · 𝐵 ) + 𝐵 ) = ( ( 2 + 1 ) · 𝐵 ) ) |
34 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
35 |
34
|
oveq1i |
⊢ ( ( 2 + 1 ) · 𝐵 ) = ( 3 · 𝐵 ) |
36 |
33 35
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → ( ( 2 · 𝐵 ) + 𝐵 ) = ( 3 · 𝐵 ) ) |
37 |
36
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → ( 𝐴 + ( ( 2 · 𝐵 ) + 𝐵 ) ) = ( 𝐴 + ( 3 · 𝐵 ) ) ) |
38 |
37
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → ( ( 𝐴 + ( ( 2 · 𝐵 ) + 𝐵 ) ) mod 5 ) = ( ( 𝐴 + ( 3 · 𝐵 ) ) mod 5 ) ) |
39 |
38
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → ( ( ( 𝐴 + ( ( 2 · 𝐵 ) + 𝐵 ) ) mod 5 ) = ( 𝐴 mod 5 ) ↔ ( ( 𝐴 + ( 3 · 𝐵 ) ) mod 5 ) = ( 𝐴 mod 5 ) ) ) |
40 |
28 39
|
bitrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → ( ( ( 𝐴 + ( 2 · 𝐵 ) ) mod 5 ) = ( ( 𝐴 − 𝐵 ) mod 5 ) ↔ ( ( 𝐴 + ( 3 · 𝐵 ) ) mod 5 ) = ( 𝐴 mod 5 ) ) ) |
41 |
|
eqcom |
⊢ ( ( ( 𝐴 − 𝐵 ) mod 5 ) = ( ( 𝐴 + ( 2 · 𝐵 ) ) mod 5 ) ↔ ( ( 𝐴 + ( 2 · 𝐵 ) ) mod 5 ) = ( ( 𝐴 − 𝐵 ) mod 5 ) ) |
42 |
41
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → ( ( ( 𝐴 − 𝐵 ) mod 5 ) = ( ( 𝐴 + ( 2 · 𝐵 ) ) mod 5 ) ↔ ( ( 𝐴 + ( 2 · 𝐵 ) ) mod 5 ) = ( ( 𝐴 − 𝐵 ) mod 5 ) ) ) |
43 |
|
3z |
⊢ 3 ∈ ℤ |
44 |
43
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → 3 ∈ ℤ ) |
45 |
|
addmulmodb |
⊢ ( ( 5 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) → ( 5 ∥ ( 3 · 𝐵 ) ↔ ( ( 𝐴 + ( 3 · 𝐵 ) ) mod 5 ) = ( 𝐴 mod 5 ) ) ) |
46 |
20 21 44 25 45
|
syl13anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → ( 5 ∥ ( 3 · 𝐵 ) ↔ ( ( 𝐴 + ( 3 · 𝐵 ) ) mod 5 ) = ( 𝐴 mod 5 ) ) ) |
47 |
40 42 46
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → ( ( ( 𝐴 − 𝐵 ) mod 5 ) = ( ( 𝐴 + ( 2 · 𝐵 ) ) mod 5 ) ↔ 5 ∥ ( 3 · 𝐵 ) ) ) |
48 |
18 47
|
mtbird |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → ¬ ( ( 𝐴 − 𝐵 ) mod 5 ) = ( ( 𝐴 + ( 2 · 𝐵 ) ) mod 5 ) ) |
49 |
48
|
neqned |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 3 ) ) → ( ( 𝐴 − 𝐵 ) mod 5 ) ≠ ( ( 𝐴 + ( 2 · 𝐵 ) ) mod 5 ) ) |