| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgnbgr.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 2 |
|
gpgnbgr.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
| 3 |
|
gpgnbgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 4 |
|
gpgnbgr.u |
⊢ 𝑈 = ( 𝐺 NeighbVtx 𝑋 ) |
| 5 |
|
gpgnbgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 6 |
|
eluz4eluz3 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 7 |
1 2 3 4
|
gpg3nbgrvtx0 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ♯ ‘ 𝑈 ) = 3 ) |
| 8 |
6 7
|
sylanl1 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ♯ ‘ 𝑈 ) = 3 ) |
| 9 |
|
eqid |
⊢ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 |
| 10 |
1
|
eleq2i |
⊢ ( 𝐾 ∈ 𝐽 ↔ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 11 |
10
|
biimpi |
⊢ ( 𝐾 ∈ 𝐽 → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 12 |
|
gpgusgra |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph ) |
| 13 |
2 12
|
eqeltrid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → 𝐺 ∈ USGraph ) |
| 14 |
6 11 13
|
syl2an |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) → 𝐺 ∈ USGraph ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 𝐺 ∈ USGraph ) |
| 16 |
5
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) → 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ≠ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ) |
| 17 |
16
|
neneqd |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) → ¬ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ) |
| 18 |
17
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∈ 𝐸 → ¬ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ) ) |
| 19 |
15 18
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∈ 𝐸 → ¬ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ) ) |
| 20 |
9 19
|
mt2i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ¬ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) |
| 21 |
|
df-nel |
⊢ ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ ¬ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) |
| 22 |
20 21
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 23 |
6
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 25 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 𝐾 ∈ 𝐽 ) |
| 26 |
6
|
anim1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ) |
| 27 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) → 𝑋 ∈ 𝑉 ) |
| 28 |
26 27
|
anim12i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) ) |
| 29 |
|
eqid |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 ) |
| 30 |
29 1 2 3
|
gpgvtxel2 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) → ( 2nd ‘ 𝑋 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 31 |
28 30
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 2nd ‘ 𝑋 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 32 |
1 2 3 5
|
gpg5nbgrvtx03starlem1 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ ( 2nd ‘ 𝑋 ) ∈ ( 0 ..^ 𝑁 ) ) → { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
| 33 |
24 25 31 32
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
| 34 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 4 ) ) |
| 35 |
|
elfzoelz |
⊢ ( ( 2nd ‘ 𝑋 ) ∈ ( 0 ..^ 𝑁 ) → ( 2nd ‘ 𝑋 ) ∈ ℤ ) |
| 36 |
28 30 35
|
3syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( 2nd ‘ 𝑋 ) ∈ ℤ ) |
| 37 |
1 2 3 5
|
gpg5nbgrvtx03starlem2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ∧ ( 2nd ‘ 𝑋 ) ∈ ℤ ) → { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 38 |
34 25 36 37
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 39 |
|
opex |
⊢ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 ∈ V |
| 40 |
|
opex |
⊢ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ∈ V |
| 41 |
|
opex |
⊢ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ∈ V |
| 42 |
|
preq2 |
⊢ ( 𝑦 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 → { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ) |
| 43 |
|
neleq1 |
⊢ ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 44 |
42 43
|
syl |
⊢ ( 𝑦 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 45 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 → { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ) |
| 46 |
|
neleq1 |
⊢ ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
| 47 |
45 46
|
syl |
⊢ ( 𝑦 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
| 48 |
|
preq2 |
⊢ ( 𝑦 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 → { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ) |
| 49 |
|
neleq1 |
⊢ ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 50 |
48 49
|
syl |
⊢ ( 𝑦 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 51 |
39 40 41 44 47 50
|
raltp |
⊢ ( ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ∧ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ∧ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 52 |
22 33 38 51
|
syl3anbrc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) |
| 53 |
|
prcom |
⊢ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } |
| 54 |
|
neleq1 |
⊢ ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } → ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
| 55 |
53 54
|
ax-mp |
⊢ ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
| 56 |
33 55
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 57 |
|
eqid |
⊢ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 |
| 58 |
5
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 ) → 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ≠ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ) |
| 59 |
58
|
neneqd |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 ) → ¬ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ) |
| 60 |
59
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 → ¬ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ) ) |
| 61 |
15 60
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 → ¬ 〈 1 , ( 2nd ‘ 𝑋 ) 〉 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 ) ) |
| 62 |
57 61
|
mt2i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ¬ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 ) |
| 63 |
|
df-nel |
⊢ ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ↔ ¬ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∈ 𝐸 ) |
| 64 |
62 63
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
| 65 |
1 2 3 5
|
gpg5nbgrvtx03starlem3 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ∧ ( 2nd ‘ 𝑋 ) ∈ ( 0 ..^ 𝑁 ) ) → { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 66 |
24 25 31 65
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 67 |
|
preq2 |
⊢ ( 𝑦 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 → { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ) |
| 68 |
|
neleq1 |
⊢ ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } → ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 69 |
67 68
|
syl |
⊢ ( 𝑦 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 → ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 70 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 → { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ) |
| 71 |
|
neleq1 |
⊢ ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } → ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
| 72 |
70 71
|
syl |
⊢ ( 𝑦 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 → ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
| 73 |
|
preq2 |
⊢ ( 𝑦 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 → { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ) |
| 74 |
|
neleq1 |
⊢ ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } = { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } → ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 75 |
73 74
|
syl |
⊢ ( 𝑦 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 → ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 76 |
39 40 41 69 72 75
|
raltp |
⊢ ( ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ↔ ( { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ∧ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ∧ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 77 |
56 64 66 76
|
syl3anbrc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ) |
| 78 |
|
prcom |
⊢ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } |
| 79 |
|
neleq1 |
⊢ ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 80 |
78 79
|
ax-mp |
⊢ ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 81 |
38 80
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 82 |
|
prcom |
⊢ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } = { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } |
| 83 |
|
neleq1 |
⊢ ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } = { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ↔ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 84 |
82 83
|
ax-mp |
⊢ ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ↔ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 85 |
66 84
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) |
| 86 |
|
eqid |
⊢ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 |
| 87 |
5
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) → 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ≠ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) |
| 88 |
87
|
neneqd |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) → ¬ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) |
| 89 |
88
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∈ 𝐸 → ¬ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) ) |
| 90 |
15 89
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∈ 𝐸 → ¬ 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 ) ) |
| 91 |
86 90
|
mt2i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ¬ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) |
| 92 |
|
df-nel |
⊢ ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ↔ ¬ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∈ 𝐸 ) |
| 93 |
91 92
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) |
| 94 |
|
preq2 |
⊢ ( 𝑦 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 → { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ) |
| 95 |
|
neleq1 |
⊢ ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 96 |
94 95
|
syl |
⊢ ( 𝑦 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 97 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 → { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ) |
| 98 |
|
neleq1 |
⊢ ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
| 99 |
97 98
|
syl |
⊢ ( 𝑦 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ) ) |
| 100 |
|
preq2 |
⊢ ( 𝑦 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 → { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ) |
| 101 |
|
neleq1 |
⊢ ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 102 |
100 101
|
syl |
⊢ ( 𝑦 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 → ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 103 |
39 40 41 96 99 102
|
raltp |
⊢ ( ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ↔ ( { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ∧ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 } ∉ 𝐸 ∧ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∉ 𝐸 ) ) |
| 104 |
81 85 93 103
|
syl3anbrc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) |
| 105 |
|
preq1 |
⊢ ( 𝑥 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 → { 𝑥 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } ) |
| 106 |
|
neleq1 |
⊢ ( { 𝑥 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 107 |
105 106
|
syl |
⊢ ( 𝑥 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 108 |
107
|
ralbidv |
⊢ ( 𝑥 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 → ( ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 109 |
|
preq1 |
⊢ ( 𝑥 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 → { 𝑥 , 𝑦 } = { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ) |
| 110 |
|
neleq1 |
⊢ ( { 𝑥 , 𝑦 } = { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 111 |
109 110
|
syl |
⊢ ( 𝑥 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 112 |
111
|
ralbidv |
⊢ ( 𝑥 = 〈 1 , ( 2nd ‘ 𝑋 ) 〉 → ( ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 113 |
|
preq1 |
⊢ ( 𝑥 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 → { 𝑥 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } ) |
| 114 |
|
neleq1 |
⊢ ( { 𝑥 , 𝑦 } = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 115 |
113 114
|
syl |
⊢ ( 𝑥 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 116 |
115
|
ralbidv |
⊢ ( 𝑥 = 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 → ( ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 117 |
39 40 41 108 112 116
|
raltp |
⊢ ( ∀ 𝑥 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ( ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ∧ ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 𝑦 } ∉ 𝐸 ∧ ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 , 𝑦 } ∉ 𝐸 ) ) |
| 118 |
52 77 104 117
|
syl3anbrc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ∀ 𝑥 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ) |
| 119 |
1 2 3 4
|
gpgnbgrvtx0 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 𝑈 = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ) |
| 120 |
6 119
|
sylanl1 |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → 𝑈 = { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ) |
| 121 |
120
|
raleqdv |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |
| 122 |
120 121
|
raleqbidvv |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑥 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } ∀ 𝑦 ∈ { 〈 0 , ( ( ( 2nd ‘ 𝑋 ) + 1 ) mod 𝑁 ) 〉 , 〈 1 , ( 2nd ‘ 𝑋 ) 〉 , 〈 0 , ( ( ( 2nd ‘ 𝑋 ) − 1 ) mod 𝑁 ) 〉 } { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |
| 123 |
118 122
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) |
| 124 |
8 123
|
jca |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐾 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑋 ) = 0 ) ) → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) ) |