Metamath Proof Explorer


Theorem gpg5nbgrvtx03star

Description: In a generalized Petersen graph G(N,K) of order greater than 8 ( 3 < N ), every vertex of the first kind has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every vertex of the first kind induces a subgraph which is isomorphic to a 3-star). (Contributed by AV, 31-Aug-2025)

Ref Expression
Hypotheses gpgnbgr.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
gpgnbgr.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
gpgnbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
gpgnbgr.u 𝑈 = ( 𝐺 NeighbVtx 𝑋 )
gpgnbgr.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion gpg5nbgrvtx03star ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥𝑈𝑦𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) )

Proof

Step Hyp Ref Expression
1 gpgnbgr.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
2 gpgnbgr.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
3 gpgnbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
4 gpgnbgr.u 𝑈 = ( 𝐺 NeighbVtx 𝑋 )
5 gpgnbgr.e 𝐸 = ( Edg ‘ 𝐺 )
6 eluz4eluz3 ( 𝑁 ∈ ( ℤ ‘ 4 ) → 𝑁 ∈ ( ℤ ‘ 3 ) )
7 1 2 3 4 gpg3nbgrvtx0 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ( ♯ ‘ 𝑈 ) = 3 )
8 6 7 sylanl1 ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ( ♯ ‘ 𝑈 ) = 3 )
9 eqid ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩
10 1 eleq2i ( 𝐾𝐽𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )
11 10 biimpi ( 𝐾𝐽𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) )
12 gpgusgra ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( 𝑁 gPetersenGr 𝐾 ) ∈ USGraph )
13 2 12 eqeltrid ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → 𝐺 ∈ USGraph )
14 6 11 13 syl2an ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) → 𝐺 ∈ USGraph )
15 14 adantr ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → 𝐺 ∈ USGraph )
16 5 usgredgne ( ( 𝐺 ∈ USGraph ∧ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) → ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ ≠ ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ )
17 16 neneqd ( ( 𝐺 ∈ USGraph ∧ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) → ¬ ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ )
18 17 ex ( 𝐺 ∈ USGraph → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 → ¬ ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ ) )
19 15 18 syl ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 → ¬ ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ ) )
20 9 19 mt2i ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ¬ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 )
21 df-nel ( { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ↔ ¬ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 )
22 20 21 sylibr ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 )
23 6 adantr ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) → 𝑁 ∈ ( ℤ ‘ 3 ) )
24 23 adantr ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → 𝑁 ∈ ( ℤ ‘ 3 ) )
25 simplr ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → 𝐾𝐽 )
26 6 anim1i ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) → ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) )
27 simpl ( ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) → 𝑋𝑉 )
28 26 27 anim12i ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑋𝑉 ) )
29 eqid ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 )
30 29 1 2 3 gpgvtxel2 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑋𝑉 ) → ( 2nd𝑋 ) ∈ ( 0 ..^ 𝑁 ) )
31 28 30 syl ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ( 2nd𝑋 ) ∈ ( 0 ..^ 𝑁 ) )
32 1 2 3 5 gpg5nbgrvtx03starlem1 ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ∧ ( 2nd𝑋 ) ∈ ( 0 ..^ 𝑁 ) ) → { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 )
33 24 25 31 32 syl3anc ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 )
34 simpll ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → 𝑁 ∈ ( ℤ ‘ 4 ) )
35 elfzoelz ( ( 2nd𝑋 ) ∈ ( 0 ..^ 𝑁 ) → ( 2nd𝑋 ) ∈ ℤ )
36 28 30 35 3syl ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ( 2nd𝑋 ) ∈ ℤ )
37 1 2 3 5 gpg5nbgrvtx03starlem2 ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ∧ ( 2nd𝑋 ) ∈ ℤ ) → { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 )
38 34 25 36 37 syl3anc ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 )
39 opex ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ ∈ V
40 opex ⟨ 1 , ( 2nd𝑋 ) ⟩ ∈ V
41 opex ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ ∈ V
42 preq2 ( 𝑦 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ → { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } )
43 neleq1 ( { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
44 42 43 syl ( 𝑦 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
45 preq2 ( 𝑦 = ⟨ 1 , ( 2nd𝑋 ) ⟩ → { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } )
46 neleq1 ( { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 ) )
47 45 46 syl ( 𝑦 = ⟨ 1 , ( 2nd𝑋 ) ⟩ → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 ) )
48 preq2 ( 𝑦 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ → { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } )
49 neleq1 ( { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
50 48 49 syl ( 𝑦 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
51 39 40 41 44 47 50 raltp ( ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ ( { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ∧ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 ∧ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
52 22 33 38 51 syl3anbrc ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 )
53 prcom { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ }
54 neleq1 ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } → ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 ) )
55 53 54 ax-mp ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 )
56 33 55 sylibr ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 )
57 eqid ⟨ 1 , ( 2nd𝑋 ) ⟩ = ⟨ 1 , ( 2nd𝑋 ) ⟩
58 5 usgredgne ( ( 𝐺 ∈ USGraph ∧ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 ) → ⟨ 1 , ( 2nd𝑋 ) ⟩ ≠ ⟨ 1 , ( 2nd𝑋 ) ⟩ )
59 58 neneqd ( ( 𝐺 ∈ USGraph ∧ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 ) → ¬ ⟨ 1 , ( 2nd𝑋 ) ⟩ = ⟨ 1 , ( 2nd𝑋 ) ⟩ )
60 59 ex ( 𝐺 ∈ USGraph → ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 → ¬ ⟨ 1 , ( 2nd𝑋 ) ⟩ = ⟨ 1 , ( 2nd𝑋 ) ⟩ ) )
61 15 60 syl ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 → ¬ ⟨ 1 , ( 2nd𝑋 ) ⟩ = ⟨ 1 , ( 2nd𝑋 ) ⟩ ) )
62 57 61 mt2i ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ¬ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 )
63 df-nel ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 ↔ ¬ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∈ 𝐸 )
64 62 63 sylibr ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 )
65 1 2 3 5 gpg5nbgrvtx03starlem3 ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ∧ ( 2nd𝑋 ) ∈ ( 0 ..^ 𝑁 ) ) → { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 )
66 24 25 31 65 syl3anc ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 )
67 preq2 ( 𝑦 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ → { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } = { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } )
68 neleq1 ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } = { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } → ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
69 67 68 syl ( 𝑦 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ → ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
70 preq2 ( 𝑦 = ⟨ 1 , ( 2nd𝑋 ) ⟩ → { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } = { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } )
71 neleq1 ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } = { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } → ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 ) )
72 70 71 syl ( 𝑦 = ⟨ 1 , ( 2nd𝑋 ) ⟩ → ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 ) )
73 preq2 ( 𝑦 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ → { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } = { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } )
74 neleq1 ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } = { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } → ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
75 73 74 syl ( 𝑦 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ → ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
76 39 40 41 69 72 75 raltp ( ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ ( { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ∧ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 ∧ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
77 56 64 66 76 syl3anbrc ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } ∉ 𝐸 )
78 prcom { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ }
79 neleq1 ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
80 78 79 ax-mp ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 )
81 38 80 sylibr ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 )
82 prcom { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } = { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ }
83 neleq1 ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } = { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 ↔ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
84 82 83 ax-mp ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 ↔ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 )
85 66 84 sylibr ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 )
86 eqid ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩
87 5 usgredgne ( ( 𝐺 ∈ USGraph ∧ { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) → ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ ≠ ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ )
88 87 neneqd ( ( 𝐺 ∈ USGraph ∧ { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 ) → ¬ ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ )
89 88 ex ( 𝐺 ∈ USGraph → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 → ¬ ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ ) )
90 15 89 syl ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 → ¬ ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ ) )
91 86 90 mt2i ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ¬ { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 )
92 df-nel ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ↔ ¬ { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∈ 𝐸 )
93 91 92 sylibr ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 )
94 preq2 ( 𝑦 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ → { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } )
95 neleq1 ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
96 94 95 syl ( 𝑦 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
97 preq2 ( 𝑦 = ⟨ 1 , ( 2nd𝑋 ) ⟩ → { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } )
98 neleq1 ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 ) )
99 97 98 syl ( 𝑦 = ⟨ 1 , ( 2nd𝑋 ) ⟩ → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 ) )
100 preq2 ( 𝑦 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ → { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } )
101 neleq1 ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
102 100 101 syl ( 𝑦 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ → ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
103 39 40 41 96 99 102 raltp ( ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ↔ ( { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ∧ { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ } ∉ 𝐸 ∧ { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∉ 𝐸 ) )
104 81 85 93 103 syl3anbrc ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 )
105 preq1 ( 𝑥 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ → { 𝑥 , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } )
106 neleq1 ( { 𝑥 , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ) )
107 105 106 syl ( 𝑥 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ) )
108 107 ralbidv ( 𝑥 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ → ( ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ) )
109 preq1 ( 𝑥 = ⟨ 1 , ( 2nd𝑋 ) ⟩ → { 𝑥 , 𝑦 } = { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } )
110 neleq1 ( { 𝑥 , 𝑦 } = { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } ∉ 𝐸 ) )
111 109 110 syl ( 𝑥 = ⟨ 1 , ( 2nd𝑋 ) ⟩ → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } ∉ 𝐸 ) )
112 111 ralbidv ( 𝑥 = ⟨ 1 , ( 2nd𝑋 ) ⟩ → ( ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } ∉ 𝐸 ) )
113 preq1 ( 𝑥 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ → { 𝑥 , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } )
114 neleq1 ( { 𝑥 , 𝑦 } = { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ) )
115 113 114 syl ( 𝑥 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ → ( { 𝑥 , 𝑦 } ∉ 𝐸 ↔ { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ) )
116 115 ralbidv ( 𝑥 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ → ( ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ) )
117 39 40 41 108 112 116 raltp ( ∀ 𝑥 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ( ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ∧ ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { ⟨ 1 , ( 2nd𝑋 ) ⟩ , 𝑦 } ∉ 𝐸 ∧ ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ , 𝑦 } ∉ 𝐸 ) )
118 52 77 104 117 syl3anbrc ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ∀ 𝑥 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { 𝑥 , 𝑦 } ∉ 𝐸 )
119 1 2 3 4 gpgnbgrvtx0 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → 𝑈 = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } )
120 6 119 sylanl1 ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → 𝑈 = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } )
121 120 raleqdv ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ( ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { 𝑥 , 𝑦 } ∉ 𝐸 ) )
122 120 121 raleqbidvv ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ( ∀ 𝑥𝑈𝑦𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ↔ ∀ 𝑥 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } ∀ 𝑦 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 𝑁 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 𝑁 ) ⟩ } { 𝑥 , 𝑦 } ∉ 𝐸 ) )
123 118 122 mpbird ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ∀ 𝑥𝑈𝑦𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 )
124 8 123 jca ( ( ( 𝑁 ∈ ( ℤ ‘ 4 ) ∧ 𝐾𝐽 ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → ( ( ♯ ‘ 𝑈 ) = 3 ∧ ∀ 𝑥𝑈𝑦𝑈 { 𝑥 , 𝑦 } ∉ 𝐸 ) )