Step |
Hyp |
Ref |
Expression |
1 |
|
gpg5nbgrvtx03starlem1.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
2 |
|
gpg5nbgrvtx03starlem1.g |
|- G = ( N gPetersenGr K ) |
3 |
|
gpg5nbgrvtx03starlem1.v |
|- V = ( Vtx ` G ) |
4 |
|
gpg5nbgrvtx03starlem1.e |
|- E = ( Edg ` G ) |
5 |
|
m1modnep2mod |
|- ( ( N e. ( ZZ>= ` 4 ) /\ X e. ZZ ) -> ( ( X - 1 ) mod N ) =/= ( ( X + 2 ) mod N ) ) |
6 |
5
|
3adant2 |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( ( X - 1 ) mod N ) =/= ( ( X + 2 ) mod N ) ) |
7 |
|
zcn |
|- ( X e. ZZ -> X e. CC ) |
8 |
7
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> X e. CC ) |
9 |
|
add1p1 |
|- ( X e. CC -> ( ( X + 1 ) + 1 ) = ( X + 2 ) ) |
10 |
8 9
|
syl |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( ( X + 1 ) + 1 ) = ( X + 2 ) ) |
11 |
10
|
oveq1d |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( ( ( X + 1 ) + 1 ) mod N ) = ( ( X + 2 ) mod N ) ) |
12 |
6 11
|
neeqtrrd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( ( X - 1 ) mod N ) =/= ( ( ( X + 1 ) + 1 ) mod N ) ) |
13 |
|
zre |
|- ( X e. ZZ -> X e. RR ) |
14 |
13
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> X e. RR ) |
15 |
|
1red |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> 1 e. RR ) |
16 |
14 15
|
readdcld |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( X + 1 ) e. RR ) |
17 |
|
eluz4nn |
|- ( N e. ( ZZ>= ` 4 ) -> N e. NN ) |
18 |
17
|
nnrpd |
|- ( N e. ( ZZ>= ` 4 ) -> N e. RR+ ) |
19 |
18
|
3ad2ant1 |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> N e. RR+ ) |
20 |
|
modaddmod |
|- ( ( ( X + 1 ) e. RR /\ 1 e. RR /\ N e. RR+ ) -> ( ( ( ( X + 1 ) mod N ) + 1 ) mod N ) = ( ( ( X + 1 ) + 1 ) mod N ) ) |
21 |
16 15 19 20
|
syl3anc |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( ( ( ( X + 1 ) mod N ) + 1 ) mod N ) = ( ( ( X + 1 ) + 1 ) mod N ) ) |
22 |
12 21
|
neeqtrrd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( ( X - 1 ) mod N ) =/= ( ( ( ( X + 1 ) mod N ) + 1 ) mod N ) ) |
23 |
22
|
ad2antrl |
|- ( ( ( ( X + 1 ) mod N ) = x /\ ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X - 1 ) mod N ) =/= ( ( ( ( X + 1 ) mod N ) + 1 ) mod N ) ) |
24 |
|
oveq1 |
|- ( ( ( X + 1 ) mod N ) = x -> ( ( ( X + 1 ) mod N ) + 1 ) = ( x + 1 ) ) |
25 |
24
|
oveq1d |
|- ( ( ( X + 1 ) mod N ) = x -> ( ( ( ( X + 1 ) mod N ) + 1 ) mod N ) = ( ( x + 1 ) mod N ) ) |
26 |
25
|
adantr |
|- ( ( ( ( X + 1 ) mod N ) = x /\ ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( ( X + 1 ) mod N ) + 1 ) mod N ) = ( ( x + 1 ) mod N ) ) |
27 |
23 26
|
neeqtrd |
|- ( ( ( ( X + 1 ) mod N ) = x /\ ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X - 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) |
28 |
27
|
olcd |
|- ( ( ( ( X + 1 ) mod N ) = x /\ ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( X + 1 ) mod N ) =/= x \/ ( ( X - 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) ) |
29 |
28
|
ex |
|- ( ( ( X + 1 ) mod N ) = x -> ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + 1 ) mod N ) =/= x \/ ( ( X - 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) ) ) |
30 |
|
orc |
|- ( ( ( X + 1 ) mod N ) =/= x -> ( ( ( X + 1 ) mod N ) =/= x \/ ( ( X - 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) ) |
31 |
30
|
a1d |
|- ( ( ( X + 1 ) mod N ) =/= x -> ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + 1 ) mod N ) =/= x \/ ( ( X - 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) ) ) |
32 |
29 31
|
pm2.61ine |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + 1 ) mod N ) =/= x \/ ( ( X - 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) ) |
33 |
|
c0ex |
|- 0 e. _V |
34 |
|
ovex |
|- ( ( X + 1 ) mod N ) e. _V |
35 |
33 34
|
opthne |
|- ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , x >. <-> ( 0 =/= 0 \/ ( ( X + 1 ) mod N ) =/= x ) ) |
36 |
|
neirr |
|- -. 0 =/= 0 |
37 |
36
|
biorfi |
|- ( ( ( X + 1 ) mod N ) =/= x <-> ( 0 =/= 0 \/ ( ( X + 1 ) mod N ) =/= x ) ) |
38 |
35 37
|
bitr4i |
|- ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , x >. <-> ( ( X + 1 ) mod N ) =/= x ) |
39 |
38
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , x >. <-> ( ( X + 1 ) mod N ) =/= x ) ) |
40 |
|
ovex |
|- ( ( X - 1 ) mod N ) e. _V |
41 |
33 40
|
opthne |
|- ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. <-> ( 0 =/= 0 \/ ( ( X - 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) ) |
42 |
36
|
biorfi |
|- ( ( ( X - 1 ) mod N ) =/= ( ( x + 1 ) mod N ) <-> ( 0 =/= 0 \/ ( ( X - 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) ) |
43 |
41 42
|
bitr4i |
|- ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. <-> ( ( X - 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) |
44 |
43
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. <-> ( ( X - 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) ) |
45 |
39 44
|
orbi12d |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , x >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) <-> ( ( ( X + 1 ) mod N ) =/= x \/ ( ( X - 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) ) ) |
46 |
32 45
|
mpbird |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , x >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) ) |
47 |
|
eluz4eluz2 |
|- ( N e. ( ZZ>= ` 4 ) -> N e. ( ZZ>= ` 2 ) ) |
48 |
47
|
anim1i |
|- ( ( N e. ( ZZ>= ` 4 ) /\ X e. ZZ ) -> ( N e. ( ZZ>= ` 2 ) /\ X e. ZZ ) ) |
49 |
48
|
3adant2 |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( N e. ( ZZ>= ` 2 ) /\ X e. ZZ ) ) |
50 |
|
zp1modne |
|- ( ( N e. ( ZZ>= ` 2 ) /\ X e. ZZ ) -> ( ( X + 1 ) mod N ) =/= ( X mod N ) ) |
51 |
49 50
|
syl |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( ( X + 1 ) mod N ) =/= ( X mod N ) ) |
52 |
|
npcan1 |
|- ( X e. CC -> ( ( X - 1 ) + 1 ) = X ) |
53 |
8 52
|
syl |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( ( X - 1 ) + 1 ) = X ) |
54 |
53
|
oveq1d |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( ( ( X - 1 ) + 1 ) mod N ) = ( X mod N ) ) |
55 |
51 54
|
neeqtrrd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( ( X + 1 ) mod N ) =/= ( ( ( X - 1 ) + 1 ) mod N ) ) |
56 |
14 15
|
resubcld |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( X - 1 ) e. RR ) |
57 |
|
modaddmod |
|- ( ( ( X - 1 ) e. RR /\ 1 e. RR /\ N e. RR+ ) -> ( ( ( ( X - 1 ) mod N ) + 1 ) mod N ) = ( ( ( X - 1 ) + 1 ) mod N ) ) |
58 |
56 15 19 57
|
syl3anc |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( ( ( ( X - 1 ) mod N ) + 1 ) mod N ) = ( ( ( X - 1 ) + 1 ) mod N ) ) |
59 |
55 58
|
neeqtrrd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( ( X + 1 ) mod N ) =/= ( ( ( ( X - 1 ) mod N ) + 1 ) mod N ) ) |
60 |
59
|
ad2antrl |
|- ( ( ( ( X - 1 ) mod N ) = x /\ ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X + 1 ) mod N ) =/= ( ( ( ( X - 1 ) mod N ) + 1 ) mod N ) ) |
61 |
|
oveq1 |
|- ( ( ( X - 1 ) mod N ) = x -> ( ( ( X - 1 ) mod N ) + 1 ) = ( x + 1 ) ) |
62 |
61
|
oveq1d |
|- ( ( ( X - 1 ) mod N ) = x -> ( ( ( ( X - 1 ) mod N ) + 1 ) mod N ) = ( ( x + 1 ) mod N ) ) |
63 |
62
|
adantr |
|- ( ( ( ( X - 1 ) mod N ) = x /\ ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( ( X - 1 ) mod N ) + 1 ) mod N ) = ( ( x + 1 ) mod N ) ) |
64 |
60 63
|
neeqtrd |
|- ( ( ( ( X - 1 ) mod N ) = x /\ ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( X + 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) |
65 |
64
|
orcd |
|- ( ( ( ( X - 1 ) mod N ) = x /\ ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) ) -> ( ( ( X + 1 ) mod N ) =/= ( ( x + 1 ) mod N ) \/ ( ( X - 1 ) mod N ) =/= x ) ) |
66 |
65
|
ex |
|- ( ( ( X - 1 ) mod N ) = x -> ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + 1 ) mod N ) =/= ( ( x + 1 ) mod N ) \/ ( ( X - 1 ) mod N ) =/= x ) ) ) |
67 |
|
olc |
|- ( ( ( X - 1 ) mod N ) =/= x -> ( ( ( X + 1 ) mod N ) =/= ( ( x + 1 ) mod N ) \/ ( ( X - 1 ) mod N ) =/= x ) ) |
68 |
67
|
a1d |
|- ( ( ( X - 1 ) mod N ) =/= x -> ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + 1 ) mod N ) =/= ( ( x + 1 ) mod N ) \/ ( ( X - 1 ) mod N ) =/= x ) ) ) |
69 |
66 68
|
pm2.61ine |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( X + 1 ) mod N ) =/= ( ( x + 1 ) mod N ) \/ ( ( X - 1 ) mod N ) =/= x ) ) |
70 |
33 34
|
opthne |
|- ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. <-> ( 0 =/= 0 \/ ( ( X + 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) ) |
71 |
36
|
biorfi |
|- ( ( ( X + 1 ) mod N ) =/= ( ( x + 1 ) mod N ) <-> ( 0 =/= 0 \/ ( ( X + 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) ) |
72 |
70 71
|
bitr4i |
|- ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. <-> ( ( X + 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) |
73 |
72
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. <-> ( ( X + 1 ) mod N ) =/= ( ( x + 1 ) mod N ) ) ) |
74 |
33 40
|
opthne |
|- ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. <-> ( 0 =/= 0 \/ ( ( X - 1 ) mod N ) =/= x ) ) |
75 |
36
|
biorfi |
|- ( ( ( X - 1 ) mod N ) =/= x <-> ( 0 =/= 0 \/ ( ( X - 1 ) mod N ) =/= x ) ) |
76 |
74 75
|
bitr4i |
|- ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. <-> ( ( X - 1 ) mod N ) =/= x ) |
77 |
76
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. <-> ( ( X - 1 ) mod N ) =/= x ) ) |
78 |
73 77
|
orbi12d |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. ) <-> ( ( ( X + 1 ) mod N ) =/= ( ( x + 1 ) mod N ) \/ ( ( X - 1 ) mod N ) =/= x ) ) ) |
79 |
69 78
|
mpbird |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. ) ) |
80 |
|
opex |
|- <. 0 , ( ( X + 1 ) mod N ) >. e. _V |
81 |
|
opex |
|- <. 0 , ( ( X - 1 ) mod N ) >. e. _V |
82 |
80 81
|
pm3.2i |
|- ( <. 0 , ( ( X + 1 ) mod N ) >. e. _V /\ <. 0 , ( ( X - 1 ) mod N ) >. e. _V ) |
83 |
|
opex |
|- <. 0 , x >. e. _V |
84 |
|
opex |
|- <. 0 , ( ( x + 1 ) mod N ) >. e. _V |
85 |
83 84
|
pm3.2i |
|- ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V ) |
86 |
82 85
|
pm3.2i |
|- ( ( <. 0 , ( ( X + 1 ) mod N ) >. e. _V /\ <. 0 , ( ( X - 1 ) mod N ) >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V ) ) |
87 |
|
prneimg2 |
|- ( ( ( <. 0 , ( ( X + 1 ) mod N ) >. e. _V /\ <. 0 , ( ( X - 1 ) mod N ) >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod N ) >. e. _V ) ) -> ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } <-> ( ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , x >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) /\ ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. ) ) ) ) |
88 |
86 87
|
mp1i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } <-> ( ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , x >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. ) /\ ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , ( ( x + 1 ) mod N ) >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. ) ) ) ) |
89 |
46 79 88
|
mpbir2and |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) |
90 |
|
0ne1 |
|- 0 =/= 1 |
91 |
90
|
orci |
|- ( 0 =/= 1 \/ ( ( X - 1 ) mod N ) =/= x ) |
92 |
33 40
|
opthne |
|- ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. <-> ( 0 =/= 1 \/ ( ( X - 1 ) mod N ) =/= x ) ) |
93 |
91 92
|
mpbir |
|- <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. |
94 |
93
|
olci |
|- ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , x >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. ) |
95 |
90
|
orci |
|- ( 0 =/= 1 \/ ( ( X + 1 ) mod N ) =/= x ) |
96 |
33 34
|
opthne |
|- ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , x >. <-> ( 0 =/= 1 \/ ( ( X + 1 ) mod N ) =/= x ) ) |
97 |
95 96
|
mpbir |
|- <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , x >. |
98 |
97
|
orci |
|- ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , x >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. ) |
99 |
94 98
|
pm3.2i |
|- ( ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , x >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. ) /\ ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , x >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. ) ) |
100 |
99
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , x >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. ) /\ ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , x >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. ) ) ) |
101 |
|
opex |
|- <. 1 , x >. e. _V |
102 |
83 101
|
pm3.2i |
|- ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) |
103 |
82 102
|
pm3.2i |
|- ( ( <. 0 , ( ( X + 1 ) mod N ) >. e. _V /\ <. 0 , ( ( X - 1 ) mod N ) >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) ) |
104 |
|
prneimg2 |
|- ( ( ( <. 0 , ( ( X + 1 ) mod N ) >. e. _V /\ <. 0 , ( ( X - 1 ) mod N ) >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) ) -> ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> ( ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , x >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. ) /\ ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , x >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. ) ) ) ) |
105 |
103 104
|
mp1i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> ( ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 0 , x >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. ) /\ ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , x >. \/ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 0 , x >. ) ) ) ) |
106 |
100 105
|
mpbird |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } ) |
107 |
|
opex |
|- <. 1 , ( ( x + K ) mod N ) >. e. _V |
108 |
101 107
|
pm3.2i |
|- ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V ) |
109 |
82 108
|
pm3.2i |
|- ( ( <. 0 , ( ( X + 1 ) mod N ) >. e. _V /\ <. 0 , ( ( X - 1 ) mod N ) >. e. _V ) /\ ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V ) ) |
110 |
90
|
orci |
|- ( 0 =/= 1 \/ ( ( X + 1 ) mod N ) =/= ( ( x + K ) mod N ) ) |
111 |
33 34
|
opthne |
|- ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. <-> ( 0 =/= 1 \/ ( ( X + 1 ) mod N ) =/= ( ( x + K ) mod N ) ) ) |
112 |
110 111
|
mpbir |
|- <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. |
113 |
97 112
|
pm3.2i |
|- ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , x >. /\ <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) |
114 |
113
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , x >. /\ <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) ) |
115 |
114
|
orcd |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , x >. /\ <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) \/ ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. /\ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) ) ) |
116 |
|
prneimg |
|- ( ( ( <. 0 , ( ( X + 1 ) mod N ) >. e. _V /\ <. 0 , ( ( X - 1 ) mod N ) >. e. _V ) /\ ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + K ) mod N ) >. e. _V ) ) -> ( ( ( <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , x >. /\ <. 0 , ( ( X + 1 ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) \/ ( <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , x >. /\ <. 0 , ( ( X - 1 ) mod N ) >. =/= <. 1 , ( ( x + K ) mod N ) >. ) ) -> { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
117 |
109 115 116
|
mpsyl |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) |
118 |
89 106 117
|
3jca |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) /\ x e. ( 0 ..^ N ) ) -> ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
119 |
118
|
ralrimiva |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> A. x e. ( 0 ..^ N ) ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
120 |
|
ralnex |
|- ( A. x e. ( 0 ..^ N ) -. ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> -. E. x e. ( 0 ..^ N ) ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
121 |
|
3ioran |
|- ( -. ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( -. { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ -. { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } /\ -. { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
122 |
|
df-ne |
|- ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } <-> -. { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } ) |
123 |
|
df-ne |
|- ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> -. { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } ) |
124 |
|
df-ne |
|- ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } <-> -. { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) |
125 |
122 123 124
|
3anbi123i |
|- ( ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( -. { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ -. { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } /\ -. { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
126 |
121 125
|
bitr4i |
|- ( -. ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
127 |
126
|
ralbii |
|- ( A. x e. ( 0 ..^ N ) -. ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> A. x e. ( 0 ..^ N ) ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
128 |
120 127
|
bitr3i |
|- ( -. E. x e. ( 0 ..^ N ) ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> A. x e. ( 0 ..^ N ) ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } /\ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } =/= { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
129 |
119 128
|
sylibr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> -. E. x e. ( 0 ..^ N ) ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
130 |
|
eluz4eluz3 |
|- ( N e. ( ZZ>= ` 4 ) -> N e. ( ZZ>= ` 3 ) ) |
131 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
132 |
131 1 2 4
|
gpgedgel |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } e. E <-> E. x e. ( 0 ..^ N ) ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
133 |
130 132
|
sylan |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) -> ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } e. E <-> E. x e. ( 0 ..^ N ) ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
134 |
133
|
3adant3 |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } e. E <-> E. x e. ( 0 ..^ N ) ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
135 |
129 134
|
mtbird |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> -. { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } e. E ) |
136 |
|
df-nel |
|- ( { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } e/ E <-> -. { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } e. E ) |
137 |
135 136
|
sylibr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ K e. J /\ X e. ZZ ) -> { <. 0 , ( ( X + 1 ) mod N ) >. , <. 0 , ( ( X - 1 ) mod N ) >. } e/ E ) |