Metamath Proof Explorer


Theorem gpg5nbgr3star

Description: In a generalized Petersen graph G(N,K) of order 10 ( N = 5 ), these are the Petersen graph G(5,2) and the 5-prism G(5,1), every vertex has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every vertex induces a subgraph which is isomorphic to a 3-star). This does not hold for every generalized Petersen graph: for example, in the 3-prism G(3,1) (see gpg31grim3prism TODO) and the Dürer graph G(6,2) there are vertices which have neighborhoods containing triangles. In general, all generalized Peterson graphs G(N,K) with N = 3 x. K contain triangles. (Contributed by AV, 8-Sep-2025)

Ref Expression
Hypotheses gpgnbgr.j J = 1 ..^ N 2
gpgnbgr.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpgnbgr.v V = Vtx G
gpgnbgr.u U = G NeighbVtx X
gpgnbgr.e E = Edg G
Assertion gpg5nbgr3star N = 5 K J X V U = 3 x U y U x y E

Proof

Step Hyp Ref Expression
1 gpgnbgr.j J = 1 ..^ N 2
2 gpgnbgr.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
3 gpgnbgr.v V = Vtx G
4 gpgnbgr.u U = G NeighbVtx X
5 gpgnbgr.e E = Edg G
6 5eluz3 5 3
7 eleq1 N = 5 N 3 5 3
8 6 7 mpbiri N = 5 N 3
9 8 anim1i N = 5 K J N 3 K J
10 eqid 0 ..^ N = 0 ..^ N
11 10 1 2 3 gpgvtxel N 3 K J X V a 0 1 b 0 ..^ N X = a b
12 9 11 syl N = 5 K J X V a 0 1 b 0 ..^ N X = a b
13 12 biimp3a N = 5 K J X V a 0 1 b 0 ..^ N X = a b
14 elpri a 0 1 a = 0 a = 1
15 opeq1 a = 0 a b = 0 b
16 15 eqeq2d a = 0 X = a b X = 0 b
17 16 adantr a = 0 N = 5 K J X V X = a b X = 0 b
18 c0ex 0 V
19 vex b V
20 18 19 op1std X = 0 b 1 st X = 0
21 4z 4
22 5nn 5
23 22 nnzi 5
24 4re 4
25 5re 5
26 4lt5 4 < 5
27 24 25 26 ltleii 4 5
28 eluz2 5 4 4 5 4 5
29 21 23 27 28 mpbir3an 5 4
30 eleq1 N = 5 N 4 5 4
31 29 30 mpbiri N = 5 N 4
32 1 2 3 4 5 gpg5nbgrvtx03star N 4 K J X V 1 st X = 0 U = 3 x U y U x y E
33 31 32 sylanl1 N = 5 K J X V 1 st X = 0 U = 3 x U y U x y E
34 33 exp43 N = 5 K J X V 1 st X = 0 U = 3 x U y U x y E
35 34 3imp N = 5 K J X V 1 st X = 0 U = 3 x U y U x y E
36 20 35 syl5 N = 5 K J X V X = 0 b U = 3 x U y U x y E
37 36 adantl a = 0 N = 5 K J X V X = 0 b U = 3 x U y U x y E
38 17 37 sylbid a = 0 N = 5 K J X V X = a b U = 3 x U y U x y E
39 38 ex a = 0 N = 5 K J X V X = a b U = 3 x U y U x y E
40 opeq1 a = 1 a b = 1 b
41 40 eqeq2d a = 1 X = a b X = 1 b
42 41 adantr a = 1 N = 5 K J X V X = a b X = 1 b
43 1ex 1 V
44 43 19 op1std X = 1 b 1 st X = 1
45 1 2 3 4 gpg3nbgrvtx1 N 3 K J X V 1 st X = 1 U = 3
46 8 45 sylanl1 N = 5 K J X V 1 st X = 1 U = 3
47 eqid 1 2 nd X + K mod N = 1 2 nd X + K mod N
48 1 eleq2i K J K 1 ..^ N 2
49 48 biimpi K J K 1 ..^ N 2
50 gpgusgra Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) with typecode |-
51 2 50 eqeltrid N 3 K 1 ..^ N 2 G USGraph
52 8 49 51 syl2an N = 5 K J G USGraph
53 52 adantr N = 5 K J X V 1 st X = 1 G USGraph
54 5 usgredgne G USGraph 1 2 nd X + K mod N 1 2 nd X + K mod N E 1 2 nd X + K mod N 1 2 nd X + K mod N
55 54 neneqd G USGraph 1 2 nd X + K mod N 1 2 nd X + K mod N E ¬ 1 2 nd X + K mod N = 1 2 nd X + K mod N
56 55 ex G USGraph 1 2 nd X + K mod N 1 2 nd X + K mod N E ¬ 1 2 nd X + K mod N = 1 2 nd X + K mod N
57 53 56 syl N = 5 K J X V 1 st X = 1 1 2 nd X + K mod N 1 2 nd X + K mod N E ¬ 1 2 nd X + K mod N = 1 2 nd X + K mod N
58 47 57 mt2i N = 5 K J X V 1 st X = 1 ¬ 1 2 nd X + K mod N 1 2 nd X + K mod N E
59 df-nel 1 2 nd X + K mod N 1 2 nd X + K mod N E ¬ 1 2 nd X + K mod N 1 2 nd X + K mod N E
60 58 59 sylibr N = 5 K J X V 1 st X = 1 1 2 nd X + K mod N 1 2 nd X + K mod N E
61 fvexd X V 1 st X = 1 2 nd X V
62 1 2 3 5 gpg5nbgrvtx13starlem1 N = 5 K J 2 nd X V 1 2 nd X + K mod N 0 2 nd X E
63 61 62 sylan2 N = 5 K J X V 1 st X = 1 1 2 nd X + K mod N 0 2 nd X E
64 simpl X V 1 st X = 1 X V
65 9 64 anim12i N = 5 K J X V 1 st X = 1 N 3 K J X V
66 10 1 2 3 gpgvtxel2 N 3 K J X V 2 nd X 0 ..^ N
67 elfzoelz 2 nd X 0 ..^ N 2 nd X
68 65 66 67 3syl N = 5 K J X V 1 st X = 1 2 nd X
69 1 2 3 5 gpg5nbgrvtx13starlem2 N = 5 K J 2 nd X 1 2 nd X + K mod N 1 2 nd X K mod N E
70 68 69 syldan N = 5 K J X V 1 st X = 1 1 2 nd X + K mod N 1 2 nd X K mod N E
71 opex 1 2 nd X + K mod N V
72 opex 0 2 nd X V
73 opex 1 2 nd X K mod N V
74 preq2 y = 1 2 nd X + K mod N 1 2 nd X + K mod N y = 1 2 nd X + K mod N 1 2 nd X + K mod N
75 neleq1 1 2 nd X + K mod N y = 1 2 nd X + K mod N 1 2 nd X + K mod N 1 2 nd X + K mod N y E 1 2 nd X + K mod N 1 2 nd X + K mod N E
76 74 75 syl y = 1 2 nd X + K mod N 1 2 nd X + K mod N y E 1 2 nd X + K mod N 1 2 nd X + K mod N E
77 preq2 y = 0 2 nd X 1 2 nd X + K mod N y = 1 2 nd X + K mod N 0 2 nd X
78 neleq1 1 2 nd X + K mod N y = 1 2 nd X + K mod N 0 2 nd X 1 2 nd X + K mod N y E 1 2 nd X + K mod N 0 2 nd X E
79 77 78 syl y = 0 2 nd X 1 2 nd X + K mod N y E 1 2 nd X + K mod N 0 2 nd X E
80 preq2 y = 1 2 nd X K mod N 1 2 nd X + K mod N y = 1 2 nd X + K mod N 1 2 nd X K mod N
81 neleq1 1 2 nd X + K mod N y = 1 2 nd X + K mod N 1 2 nd X K mod N 1 2 nd X + K mod N y E 1 2 nd X + K mod N 1 2 nd X K mod N E
82 80 81 syl y = 1 2 nd X K mod N 1 2 nd X + K mod N y E 1 2 nd X + K mod N 1 2 nd X K mod N E
83 71 72 73 76 79 82 raltp y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N 1 2 nd X + K mod N y E 1 2 nd X + K mod N 1 2 nd X + K mod N E 1 2 nd X + K mod N 0 2 nd X E 1 2 nd X + K mod N 1 2 nd X K mod N E
84 60 63 70 83 syl3anbrc N = 5 K J X V 1 st X = 1 y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N 1 2 nd X + K mod N y E
85 prcom 0 2 nd X 1 2 nd X + K mod N = 1 2 nd X + K mod N 0 2 nd X
86 neleq1 0 2 nd X 1 2 nd X + K mod N = 1 2 nd X + K mod N 0 2 nd X 0 2 nd X 1 2 nd X + K mod N E 1 2 nd X + K mod N 0 2 nd X E
87 85 86 ax-mp 0 2 nd X 1 2 nd X + K mod N E 1 2 nd X + K mod N 0 2 nd X E
88 63 87 sylibr N = 5 K J X V 1 st X = 1 0 2 nd X 1 2 nd X + K mod N E
89 eqid 0 2 nd X = 0 2 nd X
90 5 usgredgne G USGraph 0 2 nd X 0 2 nd X E 0 2 nd X 0 2 nd X
91 90 neneqd G USGraph 0 2 nd X 0 2 nd X E ¬ 0 2 nd X = 0 2 nd X
92 91 ex G USGraph 0 2 nd X 0 2 nd X E ¬ 0 2 nd X = 0 2 nd X
93 53 92 syl N = 5 K J X V 1 st X = 1 0 2 nd X 0 2 nd X E ¬ 0 2 nd X = 0 2 nd X
94 89 93 mt2i N = 5 K J X V 1 st X = 1 ¬ 0 2 nd X 0 2 nd X E
95 df-nel 0 2 nd X 0 2 nd X E ¬ 0 2 nd X 0 2 nd X E
96 94 95 sylibr N = 5 K J X V 1 st X = 1 0 2 nd X 0 2 nd X E
97 1 2 3 5 gpg5nbgrvtx13starlem3 N = 5 K J 2 nd X V 0 2 nd X 1 2 nd X K mod N E
98 61 97 sylan2 N = 5 K J X V 1 st X = 1 0 2 nd X 1 2 nd X K mod N E
99 preq2 y = 1 2 nd X + K mod N 0 2 nd X y = 0 2 nd X 1 2 nd X + K mod N
100 neleq1 0 2 nd X y = 0 2 nd X 1 2 nd X + K mod N 0 2 nd X y E 0 2 nd X 1 2 nd X + K mod N E
101 99 100 syl y = 1 2 nd X + K mod N 0 2 nd X y E 0 2 nd X 1 2 nd X + K mod N E
102 preq2 y = 0 2 nd X 0 2 nd X y = 0 2 nd X 0 2 nd X
103 neleq1 0 2 nd X y = 0 2 nd X 0 2 nd X 0 2 nd X y E 0 2 nd X 0 2 nd X E
104 102 103 syl y = 0 2 nd X 0 2 nd X y E 0 2 nd X 0 2 nd X E
105 preq2 y = 1 2 nd X K mod N 0 2 nd X y = 0 2 nd X 1 2 nd X K mod N
106 neleq1 0 2 nd X y = 0 2 nd X 1 2 nd X K mod N 0 2 nd X y E 0 2 nd X 1 2 nd X K mod N E
107 105 106 syl y = 1 2 nd X K mod N 0 2 nd X y E 0 2 nd X 1 2 nd X K mod N E
108 71 72 73 101 104 107 raltp y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N 0 2 nd X y E 0 2 nd X 1 2 nd X + K mod N E 0 2 nd X 0 2 nd X E 0 2 nd X 1 2 nd X K mod N E
109 88 96 98 108 syl3anbrc N = 5 K J X V 1 st X = 1 y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N 0 2 nd X y E
110 prcom 1 2 nd X K mod N 1 2 nd X + K mod N = 1 2 nd X + K mod N 1 2 nd X K mod N
111 neleq1 1 2 nd X K mod N 1 2 nd X + K mod N = 1 2 nd X + K mod N 1 2 nd X K mod N 1 2 nd X K mod N 1 2 nd X + K mod N E 1 2 nd X + K mod N 1 2 nd X K mod N E
112 110 111 ax-mp 1 2 nd X K mod N 1 2 nd X + K mod N E 1 2 nd X + K mod N 1 2 nd X K mod N E
113 70 112 sylibr N = 5 K J X V 1 st X = 1 1 2 nd X K mod N 1 2 nd X + K mod N E
114 prcom 1 2 nd X K mod N 0 2 nd X = 0 2 nd X 1 2 nd X K mod N
115 neleq1 1 2 nd X K mod N 0 2 nd X = 0 2 nd X 1 2 nd X K mod N 1 2 nd X K mod N 0 2 nd X E 0 2 nd X 1 2 nd X K mod N E
116 114 115 ax-mp 1 2 nd X K mod N 0 2 nd X E 0 2 nd X 1 2 nd X K mod N E
117 98 116 sylibr N = 5 K J X V 1 st X = 1 1 2 nd X K mod N 0 2 nd X E
118 eqid 1 2 nd X K mod N = 1 2 nd X K mod N
119 5 usgredgne G USGraph 1 2 nd X K mod N 1 2 nd X K mod N E 1 2 nd X K mod N 1 2 nd X K mod N
120 119 neneqd G USGraph 1 2 nd X K mod N 1 2 nd X K mod N E ¬ 1 2 nd X K mod N = 1 2 nd X K mod N
121 120 ex G USGraph 1 2 nd X K mod N 1 2 nd X K mod N E ¬ 1 2 nd X K mod N = 1 2 nd X K mod N
122 53 121 syl N = 5 K J X V 1 st X = 1 1 2 nd X K mod N 1 2 nd X K mod N E ¬ 1 2 nd X K mod N = 1 2 nd X K mod N
123 118 122 mt2i N = 5 K J X V 1 st X = 1 ¬ 1 2 nd X K mod N 1 2 nd X K mod N E
124 df-nel 1 2 nd X K mod N 1 2 nd X K mod N E ¬ 1 2 nd X K mod N 1 2 nd X K mod N E
125 123 124 sylibr N = 5 K J X V 1 st X = 1 1 2 nd X K mod N 1 2 nd X K mod N E
126 preq2 y = 1 2 nd X + K mod N 1 2 nd X K mod N y = 1 2 nd X K mod N 1 2 nd X + K mod N
127 neleq1 1 2 nd X K mod N y = 1 2 nd X K mod N 1 2 nd X + K mod N 1 2 nd X K mod N y E 1 2 nd X K mod N 1 2 nd X + K mod N E
128 126 127 syl y = 1 2 nd X + K mod N 1 2 nd X K mod N y E 1 2 nd X K mod N 1 2 nd X + K mod N E
129 preq2 y = 0 2 nd X 1 2 nd X K mod N y = 1 2 nd X K mod N 0 2 nd X
130 neleq1 1 2 nd X K mod N y = 1 2 nd X K mod N 0 2 nd X 1 2 nd X K mod N y E 1 2 nd X K mod N 0 2 nd X E
131 129 130 syl y = 0 2 nd X 1 2 nd X K mod N y E 1 2 nd X K mod N 0 2 nd X E
132 preq2 y = 1 2 nd X K mod N 1 2 nd X K mod N y = 1 2 nd X K mod N 1 2 nd X K mod N
133 neleq1 1 2 nd X K mod N y = 1 2 nd X K mod N 1 2 nd X K mod N 1 2 nd X K mod N y E 1 2 nd X K mod N 1 2 nd X K mod N E
134 132 133 syl y = 1 2 nd X K mod N 1 2 nd X K mod N y E 1 2 nd X K mod N 1 2 nd X K mod N E
135 71 72 73 128 131 134 raltp y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N 1 2 nd X K mod N y E 1 2 nd X K mod N 1 2 nd X + K mod N E 1 2 nd X K mod N 0 2 nd X E 1 2 nd X K mod N 1 2 nd X K mod N E
136 113 117 125 135 syl3anbrc N = 5 K J X V 1 st X = 1 y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N 1 2 nd X K mod N y E
137 preq1 x = 1 2 nd X + K mod N x y = 1 2 nd X + K mod N y
138 neleq1 x y = 1 2 nd X + K mod N y x y E 1 2 nd X + K mod N y E
139 137 138 syl x = 1 2 nd X + K mod N x y E 1 2 nd X + K mod N y E
140 139 ralbidv x = 1 2 nd X + K mod N y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N x y E y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N 1 2 nd X + K mod N y E
141 preq1 x = 0 2 nd X x y = 0 2 nd X y
142 neleq1 x y = 0 2 nd X y x y E 0 2 nd X y E
143 141 142 syl x = 0 2 nd X x y E 0 2 nd X y E
144 143 ralbidv x = 0 2 nd X y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N x y E y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N 0 2 nd X y E
145 preq1 x = 1 2 nd X K mod N x y = 1 2 nd X K mod N y
146 neleq1 x y = 1 2 nd X K mod N y x y E 1 2 nd X K mod N y E
147 145 146 syl x = 1 2 nd X K mod N x y E 1 2 nd X K mod N y E
148 147 ralbidv x = 1 2 nd X K mod N y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N x y E y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N 1 2 nd X K mod N y E
149 71 72 73 140 144 148 raltp x 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N x y E y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N 1 2 nd X + K mod N y E y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N 0 2 nd X y E y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N 1 2 nd X K mod N y E
150 84 109 136 149 syl3anbrc N = 5 K J X V 1 st X = 1 x 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N x y E
151 1 2 3 4 gpgnbgrvtx1 N 3 K J X V 1 st X = 1 U = 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N
152 8 151 sylanl1 N = 5 K J X V 1 st X = 1 U = 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N
153 152 raleqdv N = 5 K J X V 1 st X = 1 y U x y E y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N x y E
154 152 153 raleqbidv N = 5 K J X V 1 st X = 1 x U y U x y E x 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N y 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N x y E
155 150 154 mpbird N = 5 K J X V 1 st X = 1 x U y U x y E
156 46 155 jca N = 5 K J X V 1 st X = 1 U = 3 x U y U x y E
157 156 exp43 N = 5 K J X V 1 st X = 1 U = 3 x U y U x y E
158 157 3imp N = 5 K J X V 1 st X = 1 U = 3 x U y U x y E
159 44 158 syl5 N = 5 K J X V X = 1 b U = 3 x U y U x y E
160 159 adantl a = 1 N = 5 K J X V X = 1 b U = 3 x U y U x y E
161 42 160 sylbid a = 1 N = 5 K J X V X = a b U = 3 x U y U x y E
162 161 ex a = 1 N = 5 K J X V X = a b U = 3 x U y U x y E
163 39 162 jaoi a = 0 a = 1 N = 5 K J X V X = a b U = 3 x U y U x y E
164 14 163 syl a 0 1 N = 5 K J X V X = a b U = 3 x U y U x y E
165 164 impcom N = 5 K J X V a 0 1 X = a b U = 3 x U y U x y E
166 165 a1d N = 5 K J X V a 0 1 b 0 ..^ N X = a b U = 3 x U y U x y E
167 166 expimpd N = 5 K J X V a 0 1 b 0 ..^ N X = a b U = 3 x U y U x y E
168 167 rexlimdvv N = 5 K J X V a 0 1 b 0 ..^ N X = a b U = 3 x U y U x y E
169 13 168 mpd N = 5 K J X V U = 3 x U y U x y E