Metamath Proof Explorer


Theorem gpg5gricstgr3

Description: Each closed neighborhood in a generalized Petersen graph G(N,K) of order 10 ( N = 5 ), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is isomorphic to a 3-star. (Contributed by AV, 13-Sep-2025)

Ref Expression
Hypothesis gpg5gricstgr3.g 𝐺 = ( 5 gPetersenGr 𝐾 )
Assertion gpg5gricstgr3 ( ( 𝐾 ∈ ( 1 ... 2 ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑉 ) ) ≃𝑔𝑟 ( StarGr ‘ 3 ) )

Proof

Step Hyp Ref Expression
1 gpg5gricstgr3.g 𝐺 = ( 5 gPetersenGr 𝐾 )
2 5eluz3 5 ∈ ( ℤ ‘ 3 )
3 2z 2 ∈ ℤ
4 fzval3 ( 2 ∈ ℤ → ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) ) )
5 3 4 ax-mp ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) )
6 2p1e3 ( 2 + 1 ) = 3
7 6 oveq2i ( 1 ..^ ( 2 + 1 ) ) = ( 1 ..^ 3 )
8 ceil5half3 ( ⌈ ‘ ( 5 / 2 ) ) = 3
9 8 eqcomi 3 = ( ⌈ ‘ ( 5 / 2 ) )
10 9 oveq2i ( 1 ..^ 3 ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) )
11 5 7 10 3eqtri ( 1 ... 2 ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) )
12 11 eleq2i ( 𝐾 ∈ ( 1 ... 2 ) ↔ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) )
13 12 biimpi ( 𝐾 ∈ ( 1 ... 2 ) → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) )
14 gpgusgra ( ( 5 ∈ ( ℤ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) → ( 5 gPetersenGr 𝐾 ) ∈ USGraph )
15 1 14 eqeltrid ( ( 5 ∈ ( ℤ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) → 𝐺 ∈ USGraph )
16 2 13 15 sylancr ( 𝐾 ∈ ( 1 ... 2 ) → 𝐺 ∈ USGraph )
17 16 anim1i ( ( 𝐾 ∈ ( 1 ... 2 ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) )
18 eqidd ( ( 𝐾 ∈ ( 1 ... 2 ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → 5 = 5 )
19 13 adantr ( ( 𝐾 ∈ ( 1 ... 2 ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) )
20 simpr ( ( 𝐾 ∈ ( 1 ... 2 ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑉 ∈ ( Vtx ‘ 𝐺 ) )
21 eqid ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) )
22 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
23 eqid ( 𝐺 NeighbVtx 𝑉 ) = ( 𝐺 NeighbVtx 𝑉 )
24 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
25 21 1 22 23 24 gpg5nbgr3star ( ( 5 = 5 ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑉 ) ) = 3 ∧ ∀ 𝑥 ∈ ( 𝐺 NeighbVtx 𝑉 ) ∀ 𝑦 ∈ ( 𝐺 NeighbVtx 𝑉 ) { 𝑥 , 𝑦 } ∉ ( Edg ‘ 𝐺 ) ) )
26 18 19 20 25 syl3anc ( ( 𝐾 ∈ ( 1 ... 2 ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑉 ) ) = 3 ∧ ∀ 𝑥 ∈ ( 𝐺 NeighbVtx 𝑉 ) ∀ 𝑦 ∈ ( 𝐺 NeighbVtx 𝑉 ) { 𝑥 , 𝑦 } ∉ ( Edg ‘ 𝐺 ) ) )
27 eqid ( 𝐺 ClNeighbVtx 𝑉 ) = ( 𝐺 ClNeighbVtx 𝑉 )
28 3nn0 3 ∈ ℕ0
29 eqid ( StarGr ‘ 3 ) = ( StarGr ‘ 3 )
30 eqid ( Vtx ‘ ( StarGr ‘ 3 ) ) = ( Vtx ‘ ( StarGr ‘ 3 ) )
31 22 23 27 28 29 30 24 isubgr3stgr ( ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑉 ) ) = 3 ∧ ∀ 𝑥 ∈ ( 𝐺 NeighbVtx 𝑉 ) ∀ 𝑦 ∈ ( 𝐺 NeighbVtx 𝑉 ) { 𝑥 , 𝑦 } ∉ ( Edg ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑉 ) ) ≃𝑔𝑟 ( StarGr ‘ 3 ) ) )
32 17 26 31 sylc ( ( 𝐾 ∈ ( 1 ... 2 ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑉 ) ) ≃𝑔𝑟 ( StarGr ‘ 3 ) )