Step |
Hyp |
Ref |
Expression |
1 |
|
gpg5gricstgr3.g |
⊢ 𝐺 = ( 5 gPetersenGr 𝐾 ) |
2 |
|
5eluz3 |
⊢ 5 ∈ ( ℤ≥ ‘ 3 ) |
3 |
|
2z |
⊢ 2 ∈ ℤ |
4 |
|
fzval3 |
⊢ ( 2 ∈ ℤ → ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) ) |
6 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
7 |
6
|
oveq2i |
⊢ ( 1 ..^ ( 2 + 1 ) ) = ( 1 ..^ 3 ) |
8 |
|
ceil5half3 |
⊢ ( ⌈ ‘ ( 5 / 2 ) ) = 3 |
9 |
8
|
eqcomi |
⊢ 3 = ( ⌈ ‘ ( 5 / 2 ) ) |
10 |
9
|
oveq2i |
⊢ ( 1 ..^ 3 ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) |
11 |
5 7 10
|
3eqtri |
⊢ ( 1 ... 2 ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) |
12 |
11
|
eleq2i |
⊢ ( 𝐾 ∈ ( 1 ... 2 ) ↔ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) |
13 |
12
|
biimpi |
⊢ ( 𝐾 ∈ ( 1 ... 2 ) → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) |
14 |
|
gpgusgra |
⊢ ( ( 5 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) → ( 5 gPetersenGr 𝐾 ) ∈ USGraph ) |
15 |
1 14
|
eqeltrid |
⊢ ( ( 5 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) → 𝐺 ∈ USGraph ) |
16 |
2 13 15
|
sylancr |
⊢ ( 𝐾 ∈ ( 1 ... 2 ) → 𝐺 ∈ USGraph ) |
17 |
16
|
anim1i |
⊢ ( ( 𝐾 ∈ ( 1 ... 2 ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) ) |
18 |
|
eqidd |
⊢ ( ( 𝐾 ∈ ( 1 ... 2 ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → 5 = 5 ) |
19 |
13
|
adantr |
⊢ ( ( 𝐾 ∈ ( 1 ... 2 ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) |
20 |
|
simpr |
⊢ ( ( 𝐾 ∈ ( 1 ... 2 ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) |
21 |
|
eqid |
⊢ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) |
22 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
23 |
|
eqid |
⊢ ( 𝐺 NeighbVtx 𝑉 ) = ( 𝐺 NeighbVtx 𝑉 ) |
24 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
25 |
21 1 22 23 24
|
gpg5nbgr3star |
⊢ ( ( 5 = 5 ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑉 ) ) = 3 ∧ ∀ 𝑥 ∈ ( 𝐺 NeighbVtx 𝑉 ) ∀ 𝑦 ∈ ( 𝐺 NeighbVtx 𝑉 ) { 𝑥 , 𝑦 } ∉ ( Edg ‘ 𝐺 ) ) ) |
26 |
18 19 20 25
|
syl3anc |
⊢ ( ( 𝐾 ∈ ( 1 ... 2 ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑉 ) ) = 3 ∧ ∀ 𝑥 ∈ ( 𝐺 NeighbVtx 𝑉 ) ∀ 𝑦 ∈ ( 𝐺 NeighbVtx 𝑉 ) { 𝑥 , 𝑦 } ∉ ( Edg ‘ 𝐺 ) ) ) |
27 |
|
eqid |
⊢ ( 𝐺 ClNeighbVtx 𝑉 ) = ( 𝐺 ClNeighbVtx 𝑉 ) |
28 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
29 |
|
eqid |
⊢ ( StarGr ‘ 3 ) = ( StarGr ‘ 3 ) |
30 |
|
eqid |
⊢ ( Vtx ‘ ( StarGr ‘ 3 ) ) = ( Vtx ‘ ( StarGr ‘ 3 ) ) |
31 |
22 23 27 28 29 30 24
|
isubgr3stgr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑉 ) ) = 3 ∧ ∀ 𝑥 ∈ ( 𝐺 NeighbVtx 𝑉 ) ∀ 𝑦 ∈ ( 𝐺 NeighbVtx 𝑉 ) { 𝑥 , 𝑦 } ∉ ( Edg ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑉 ) ) ≃𝑔𝑟 ( StarGr ‘ 3 ) ) ) |
32 |
17 26 31
|
sylc |
⊢ ( ( 𝐾 ∈ ( 1 ... 2 ) ∧ 𝑉 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑉 ) ) ≃𝑔𝑟 ( StarGr ‘ 3 ) ) |