| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinvval.b |
|- B = ( Base ` G ) |
| 2 |
|
grpinvval.p |
|- .+ = ( +g ` G ) |
| 3 |
|
grpinvval.o |
|- .0. = ( 0g ` G ) |
| 4 |
|
grpinvval.n |
|- N = ( invg ` G ) |
| 5 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
| 6 |
5 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = B ) |
| 7 |
|
fveq2 |
|- ( g = G -> ( +g ` g ) = ( +g ` G ) ) |
| 8 |
7 2
|
eqtr4di |
|- ( g = G -> ( +g ` g ) = .+ ) |
| 9 |
8
|
oveqd |
|- ( g = G -> ( y ( +g ` g ) x ) = ( y .+ x ) ) |
| 10 |
|
fveq2 |
|- ( g = G -> ( 0g ` g ) = ( 0g ` G ) ) |
| 11 |
10 3
|
eqtr4di |
|- ( g = G -> ( 0g ` g ) = .0. ) |
| 12 |
9 11
|
eqeq12d |
|- ( g = G -> ( ( y ( +g ` g ) x ) = ( 0g ` g ) <-> ( y .+ x ) = .0. ) ) |
| 13 |
6 12
|
riotaeqbidv |
|- ( g = G -> ( iota_ y e. ( Base ` g ) ( y ( +g ` g ) x ) = ( 0g ` g ) ) = ( iota_ y e. B ( y .+ x ) = .0. ) ) |
| 14 |
6 13
|
mpteq12dv |
|- ( g = G -> ( x e. ( Base ` g ) |-> ( iota_ y e. ( Base ` g ) ( y ( +g ` g ) x ) = ( 0g ` g ) ) ) = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) |
| 15 |
|
df-minusg |
|- invg = ( g e. _V |-> ( x e. ( Base ` g ) |-> ( iota_ y e. ( Base ` g ) ( y ( +g ` g ) x ) = ( 0g ` g ) ) ) ) |
| 16 |
14 15 1
|
mptfvmpt |
|- ( G e. _V -> ( invg ` G ) = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) |
| 17 |
|
fvprc |
|- ( -. G e. _V -> ( invg ` G ) = (/) ) |
| 18 |
|
mpt0 |
|- ( x e. (/) |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) = (/) |
| 19 |
17 18
|
eqtr4di |
|- ( -. G e. _V -> ( invg ` G ) = ( x e. (/) |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) |
| 20 |
|
fvprc |
|- ( -. G e. _V -> ( Base ` G ) = (/) ) |
| 21 |
1 20
|
eqtrid |
|- ( -. G e. _V -> B = (/) ) |
| 22 |
21
|
mpteq1d |
|- ( -. G e. _V -> ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) = ( x e. (/) |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) |
| 23 |
19 22
|
eqtr4d |
|- ( -. G e. _V -> ( invg ` G ) = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) ) |
| 24 |
16 23
|
pm2.61i |
|- ( invg ` G ) = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) |
| 25 |
4 24
|
eqtri |
|- N = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) |