| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinvfval.1 |
|- X = ran G |
| 2 |
|
grpinvfval.2 |
|- U = ( GId ` G ) |
| 3 |
|
grpinvfval.3 |
|- N = ( inv ` G ) |
| 4 |
1 2 3
|
grpoinvfval |
|- ( G e. GrpOp -> N = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ) |
| 5 |
4
|
fveq1d |
|- ( G e. GrpOp -> ( N ` A ) = ( ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ` A ) ) |
| 6 |
|
oveq2 |
|- ( x = A -> ( y G x ) = ( y G A ) ) |
| 7 |
6
|
eqeq1d |
|- ( x = A -> ( ( y G x ) = U <-> ( y G A ) = U ) ) |
| 8 |
7
|
riotabidv |
|- ( x = A -> ( iota_ y e. X ( y G x ) = U ) = ( iota_ y e. X ( y G A ) = U ) ) |
| 9 |
|
eqid |
|- ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) |
| 10 |
|
riotaex |
|- ( iota_ y e. X ( y G A ) = U ) e. _V |
| 11 |
8 9 10
|
fvmpt |
|- ( A e. X -> ( ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ` A ) = ( iota_ y e. X ( y G A ) = U ) ) |
| 12 |
5 11
|
sylan9eq |
|- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) = ( iota_ y e. X ( y G A ) = U ) ) |