| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinvfval.1 |
⊢ 𝑋 = ran 𝐺 |
| 2 |
|
grpinvfval.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
| 3 |
|
grpinvfval.3 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
| 4 |
1 2 3
|
grpoinvfval |
⊢ ( 𝐺 ∈ GrpOp → 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ) |
| 5 |
4
|
fveq1d |
⊢ ( 𝐺 ∈ GrpOp → ( 𝑁 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ‘ 𝐴 ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 𝐺 𝑥 ) = ( 𝑦 𝐺 𝐴 ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 8 |
7
|
riotabidv |
⊢ ( 𝑥 = 𝐴 → ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) = ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) |
| 10 |
|
riotaex |
⊢ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∈ V |
| 11 |
8 9 10
|
fvmpt |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ‘ 𝐴 ) = ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 12 |
5 11
|
sylan9eq |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |