| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpdivf.1 |
|- X = ran G |
| 2 |
|
grpdivf.3 |
|- D = ( /g ` G ) |
| 3 |
|
eqid |
|- ( inv ` G ) = ( inv ` G ) |
| 4 |
1 3 2
|
grpodivval |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( ( inv ` G ) ` B ) ) ) |
| 5 |
4
|
oveq1d |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A D B ) G B ) = ( ( A G ( ( inv ` G ) ` B ) ) G B ) ) |
| 6 |
|
simp1 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> G e. GrpOp ) |
| 7 |
|
simp2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> A e. X ) |
| 8 |
1 3
|
grpoinvcl |
|- ( ( G e. GrpOp /\ B e. X ) -> ( ( inv ` G ) ` B ) e. X ) |
| 9 |
8
|
3adant2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( inv ` G ) ` B ) e. X ) |
| 10 |
|
simp3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> B e. X ) |
| 11 |
1
|
grpoass |
|- ( ( G e. GrpOp /\ ( A e. X /\ ( ( inv ` G ) ` B ) e. X /\ B e. X ) ) -> ( ( A G ( ( inv ` G ) ` B ) ) G B ) = ( A G ( ( ( inv ` G ) ` B ) G B ) ) ) |
| 12 |
6 7 9 10 11
|
syl13anc |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A G ( ( inv ` G ) ` B ) ) G B ) = ( A G ( ( ( inv ` G ) ` B ) G B ) ) ) |
| 13 |
|
eqid |
|- ( GId ` G ) = ( GId ` G ) |
| 14 |
1 13 3
|
grpolinv |
|- ( ( G e. GrpOp /\ B e. X ) -> ( ( ( inv ` G ) ` B ) G B ) = ( GId ` G ) ) |
| 15 |
14
|
oveq2d |
|- ( ( G e. GrpOp /\ B e. X ) -> ( A G ( ( ( inv ` G ) ` B ) G B ) ) = ( A G ( GId ` G ) ) ) |
| 16 |
15
|
3adant2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( ( ( inv ` G ) ` B ) G B ) ) = ( A G ( GId ` G ) ) ) |
| 17 |
1 13
|
grporid |
|- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( GId ` G ) ) = A ) |
| 18 |
17
|
3adant3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( GId ` G ) ) = A ) |
| 19 |
16 18
|
eqtrd |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( ( ( inv ` G ) ` B ) G B ) ) = A ) |
| 20 |
12 19
|
eqtrd |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A G ( ( inv ` G ) ` B ) ) G B ) = A ) |
| 21 |
5 20
|
eqtrd |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A D B ) G B ) = A ) |