| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpdivf.1 |
⊢ 𝑋 = ran 𝐺 |
| 2 |
|
grpdivf.3 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) |
| 4 |
1 3 2
|
grpodivval |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
| 5 |
4
|
oveq1d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 ) ) |
| 6 |
|
simp1 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐺 ∈ GrpOp ) |
| 7 |
|
simp2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
| 8 |
1 3
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
| 9 |
8
|
3adant2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
| 10 |
|
simp3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
| 11 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 ) = ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) ) |
| 12 |
6 7 9 10 11
|
syl13anc |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 ) = ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) ) |
| 13 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
| 14 |
1 13 3
|
grpolinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) = ( GId ‘ 𝐺 ) ) |
| 15 |
14
|
oveq2d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 16 |
15
|
3adant2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 17 |
1 13
|
grporid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = 𝐴 ) |
| 18 |
17
|
3adant3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = 𝐴 ) |
| 19 |
16 18
|
eqtrd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) = 𝐴 ) |
| 20 |
12 19
|
eqtrd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 ) = 𝐴 ) |
| 21 |
5 20
|
eqtrd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = 𝐴 ) |