Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubpropd2.1 |
|- ( ph -> B = ( Base ` G ) ) |
2 |
|
grpsubpropd2.2 |
|- ( ph -> B = ( Base ` H ) ) |
3 |
|
grpsubpropd2.3 |
|- ( ph -> G e. Grp ) |
4 |
|
grpsubpropd2.4 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
5 |
|
simp1 |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ph ) |
6 |
|
simp2 |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> a e. ( Base ` G ) ) |
7 |
1
|
3ad2ant1 |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> B = ( Base ` G ) ) |
8 |
6 7
|
eleqtrrd |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> a e. B ) |
9 |
3
|
3ad2ant1 |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> G e. Grp ) |
10 |
|
simp3 |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> b e. ( Base ` G ) ) |
11 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
12 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
13 |
11 12
|
grpinvcl |
|- ( ( G e. Grp /\ b e. ( Base ` G ) ) -> ( ( invg ` G ) ` b ) e. ( Base ` G ) ) |
14 |
9 10 13
|
syl2anc |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( ( invg ` G ) ` b ) e. ( Base ` G ) ) |
15 |
14 7
|
eleqtrrd |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( ( invg ` G ) ` b ) e. B ) |
16 |
4
|
oveqrspc2v |
|- ( ( ph /\ ( a e. B /\ ( ( invg ` G ) ` b ) e. B ) ) -> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` G ) ` b ) ) ) |
17 |
5 8 15 16
|
syl12anc |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` G ) ` b ) ) ) |
18 |
1 2 4
|
grpinvpropd |
|- ( ph -> ( invg ` G ) = ( invg ` H ) ) |
19 |
18
|
fveq1d |
|- ( ph -> ( ( invg ` G ) ` b ) = ( ( invg ` H ) ` b ) ) |
20 |
19
|
oveq2d |
|- ( ph -> ( a ( +g ` H ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
21 |
20
|
3ad2ant1 |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( a ( +g ` H ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
22 |
17 21
|
eqtrd |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
23 |
22
|
mpoeq3dva |
|- ( ph -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) = ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
24 |
1 2
|
eqtr3d |
|- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
25 |
|
mpoeq12 |
|- ( ( ( Base ` G ) = ( Base ` H ) /\ ( Base ` G ) = ( Base ` H ) ) -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
26 |
24 24 25
|
syl2anc |
|- ( ph -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
27 |
23 26
|
eqtrd |
|- ( ph -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
28 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
29 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
30 |
11 28 12 29
|
grpsubfval |
|- ( -g ` G ) = ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) |
31 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
32 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
33 |
|
eqid |
|- ( invg ` H ) = ( invg ` H ) |
34 |
|
eqid |
|- ( -g ` H ) = ( -g ` H ) |
35 |
31 32 33 34
|
grpsubfval |
|- ( -g ` H ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
36 |
27 30 35
|
3eqtr4g |
|- ( ph -> ( -g ` G ) = ( -g ` H ) ) |