| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hash3tpde |
|- ( ( V e. W /\ ( # ` V ) = 3 ) -> E. a E. b E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) |
| 2 |
1
|
ex |
|- ( V e. W -> ( ( # ` V ) = 3 -> E. a E. b E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) ) |
| 3 |
|
fveq2 |
|- ( V = { a , b , c } -> ( # ` V ) = ( # ` { a , b , c } ) ) |
| 4 |
|
df-tp |
|- { a , b , c } = ( { a , b } u. { c } ) |
| 5 |
4
|
a1i |
|- ( ( a =/= b /\ a =/= c /\ b =/= c ) -> { a , b , c } = ( { a , b } u. { c } ) ) |
| 6 |
5
|
fveq2d |
|- ( ( a =/= b /\ a =/= c /\ b =/= c ) -> ( # ` { a , b , c } ) = ( # ` ( { a , b } u. { c } ) ) ) |
| 7 |
|
prfi |
|- { a , b } e. Fin |
| 8 |
|
snfi |
|- { c } e. Fin |
| 9 |
|
disjprsn |
|- ( ( a =/= c /\ b =/= c ) -> ( { a , b } i^i { c } ) = (/) ) |
| 10 |
9
|
3adant1 |
|- ( ( a =/= b /\ a =/= c /\ b =/= c ) -> ( { a , b } i^i { c } ) = (/) ) |
| 11 |
|
hashun |
|- ( ( { a , b } e. Fin /\ { c } e. Fin /\ ( { a , b } i^i { c } ) = (/) ) -> ( # ` ( { a , b } u. { c } ) ) = ( ( # ` { a , b } ) + ( # ` { c } ) ) ) |
| 12 |
7 8 10 11
|
mp3an12i |
|- ( ( a =/= b /\ a =/= c /\ b =/= c ) -> ( # ` ( { a , b } u. { c } ) ) = ( ( # ` { a , b } ) + ( # ` { c } ) ) ) |
| 13 |
|
hashprg |
|- ( ( a e. _V /\ b e. _V ) -> ( a =/= b <-> ( # ` { a , b } ) = 2 ) ) |
| 14 |
13
|
el2v |
|- ( a =/= b <-> ( # ` { a , b } ) = 2 ) |
| 15 |
14
|
biimpi |
|- ( a =/= b -> ( # ` { a , b } ) = 2 ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( a =/= b /\ a =/= c /\ b =/= c ) -> ( # ` { a , b } ) = 2 ) |
| 17 |
|
hashsng |
|- ( c e. _V -> ( # ` { c } ) = 1 ) |
| 18 |
17
|
elv |
|- ( # ` { c } ) = 1 |
| 19 |
18
|
a1i |
|- ( ( a =/= b /\ a =/= c /\ b =/= c ) -> ( # ` { c } ) = 1 ) |
| 20 |
16 19
|
oveq12d |
|- ( ( a =/= b /\ a =/= c /\ b =/= c ) -> ( ( # ` { a , b } ) + ( # ` { c } ) ) = ( 2 + 1 ) ) |
| 21 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 22 |
20 21
|
eqtrdi |
|- ( ( a =/= b /\ a =/= c /\ b =/= c ) -> ( ( # ` { a , b } ) + ( # ` { c } ) ) = 3 ) |
| 23 |
6 12 22
|
3eqtrd |
|- ( ( a =/= b /\ a =/= c /\ b =/= c ) -> ( # ` { a , b , c } ) = 3 ) |
| 24 |
3 23
|
sylan9eqr |
|- ( ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) -> ( # ` V ) = 3 ) |
| 25 |
24
|
a1i |
|- ( V e. W -> ( ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) -> ( # ` V ) = 3 ) ) |
| 26 |
25
|
exlimdv |
|- ( V e. W -> ( E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) -> ( # ` V ) = 3 ) ) |
| 27 |
26
|
exlimdvv |
|- ( V e. W -> ( E. a E. b E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) -> ( # ` V ) = 3 ) ) |
| 28 |
2 27
|
impbid |
|- ( V e. W -> ( ( # ` V ) = 3 <-> E. a E. b E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) ) |