Metamath Proof Explorer


Theorem hashf2

Description: Lemma for hasheuni . (Contributed by Thierry Arnoux, 19-Nov-2016)

Ref Expression
Assertion hashf2
|- # : _V --> ( 0 [,] +oo )

Proof

Step Hyp Ref Expression
1 hashf
 |-  # : _V --> ( NN0 u. { +oo } )
2 nn0z
 |-  ( x e. NN0 -> x e. ZZ )
3 zre
 |-  ( x e. ZZ -> x e. RR )
4 rexr
 |-  ( x e. RR -> x e. RR* )
5 2 3 4 3syl
 |-  ( x e. NN0 -> x e. RR* )
6 nn0ge0
 |-  ( x e. NN0 -> 0 <_ x )
7 elxrge0
 |-  ( x e. ( 0 [,] +oo ) <-> ( x e. RR* /\ 0 <_ x ) )
8 5 6 7 sylanbrc
 |-  ( x e. NN0 -> x e. ( 0 [,] +oo ) )
9 8 ssriv
 |-  NN0 C_ ( 0 [,] +oo )
10 0xr
 |-  0 e. RR*
11 pnfxr
 |-  +oo e. RR*
12 0lepnf
 |-  0 <_ +oo
13 ubicc2
 |-  ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> +oo e. ( 0 [,] +oo ) )
14 10 11 12 13 mp3an
 |-  +oo e. ( 0 [,] +oo )
15 snssi
 |-  ( +oo e. ( 0 [,] +oo ) -> { +oo } C_ ( 0 [,] +oo ) )
16 14 15 ax-mp
 |-  { +oo } C_ ( 0 [,] +oo )
17 9 16 unssi
 |-  ( NN0 u. { +oo } ) C_ ( 0 [,] +oo )
18 fss
 |-  ( ( # : _V --> ( NN0 u. { +oo } ) /\ ( NN0 u. { +oo } ) C_ ( 0 [,] +oo ) ) -> # : _V --> ( 0 [,] +oo ) )
19 1 17 18 mp2an
 |-  # : _V --> ( 0 [,] +oo )