Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Real and complex functions
Extended sum
hashf2
Next ⟩
hasheuni
Metamath Proof Explorer
Ascii
Unicode
Theorem
hashf2
Description:
Lemma for
hasheuni
.
(Contributed by
Thierry Arnoux
, 19-Nov-2016)
Ref
Expression
Assertion
hashf2
⊢
.
:
V
⟶
0
+∞
Proof
Step
Hyp
Ref
Expression
1
hashf
⊢
.
:
V
⟶
ℕ
0
∪
+∞
2
nn0z
⊢
x
∈
ℕ
0
→
x
∈
ℤ
3
zre
⊢
x
∈
ℤ
→
x
∈
ℝ
4
rexr
⊢
x
∈
ℝ
→
x
∈
ℝ
*
5
2
3
4
3syl
⊢
x
∈
ℕ
0
→
x
∈
ℝ
*
6
nn0ge0
⊢
x
∈
ℕ
0
→
0
≤
x
7
elxrge0
⊢
x
∈
0
+∞
↔
x
∈
ℝ
*
∧
0
≤
x
8
5
6
7
sylanbrc
⊢
x
∈
ℕ
0
→
x
∈
0
+∞
9
8
ssriv
⊢
ℕ
0
⊆
0
+∞
10
0xr
⊢
0
∈
ℝ
*
11
pnfxr
⊢
+∞
∈
ℝ
*
12
0lepnf
⊢
0
≤
+∞
13
ubicc2
⊢
0
∈
ℝ
*
∧
+∞
∈
ℝ
*
∧
0
≤
+∞
→
+∞
∈
0
+∞
14
10
11
12
13
mp3an
⊢
+∞
∈
0
+∞
15
snssi
⊢
+∞
∈
0
+∞
→
+∞
⊆
0
+∞
16
14
15
ax-mp
⊢
+∞
⊆
0
+∞
17
9
16
unssi
⊢
ℕ
0
∪
+∞
⊆
0
+∞
18
fss
⊢
.
:
V
⟶
ℕ
0
∪
+∞
∧
ℕ
0
∪
+∞
⊆
0
+∞
→
.
:
V
⟶
0
+∞
19
1
17
18
mp2an
⊢
.
:
V
⟶
0
+∞