Metamath Proof Explorer


Theorem hashf2

Description: Lemma for hasheuni . (Contributed by Thierry Arnoux, 19-Nov-2016)

Ref Expression
Assertion hashf2 . : V 0 +∞

Proof

Step Hyp Ref Expression
1 hashf . : V 0 +∞
2 nn0z x 0 x
3 zre x x
4 rexr x x *
5 2 3 4 3syl x 0 x *
6 nn0ge0 x 0 0 x
7 elxrge0 x 0 +∞ x * 0 x
8 5 6 7 sylanbrc x 0 x 0 +∞
9 8 ssriv 0 0 +∞
10 0xr 0 *
11 pnfxr +∞ *
12 0lepnf 0 +∞
13 ubicc2 0 * +∞ * 0 +∞ +∞ 0 +∞
14 10 11 12 13 mp3an +∞ 0 +∞
15 snssi +∞ 0 +∞ +∞ 0 +∞
16 14 15 ax-mp +∞ 0 +∞
17 9 16 unssi 0 +∞ 0 +∞
18 fss . : V 0 +∞ 0 +∞ 0 +∞ . : V 0 +∞
19 1 17 18 mp2an . : V 0 +∞