| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfdisj1 |
|
| 2 |
|
nfv |
|
| 3 |
|
nfv |
|
| 4 |
1 2 3
|
nf3an |
|
| 5 |
|
simp2 |
|
| 6 |
|
simp3 |
|
| 7 |
|
simp1 |
|
| 8 |
4 5 6 7
|
hashunif |
|
| 9 |
|
simpl |
|
| 10 |
|
dfss3 |
|
| 11 |
|
hashcl |
|
| 12 |
|
nn0re |
|
| 13 |
|
nn0ge0 |
|
| 14 |
|
elrege0 |
|
| 15 |
12 13 14
|
sylanbrc |
|
| 16 |
11 15
|
syl |
|
| 17 |
16
|
ralimi |
|
| 18 |
10 17
|
sylbi |
|
| 19 |
18
|
r19.21bi |
|
| 20 |
19
|
adantll |
|
| 21 |
9 20
|
esumpfinval |
|
| 22 |
21
|
3adant1 |
|
| 23 |
8 22
|
eqtr4d |
|
| 24 |
23
|
3adant1l |
|
| 25 |
24
|
3expa |
|
| 26 |
|
uniexg |
|
| 27 |
10
|
notbii |
|
| 28 |
|
rexnal |
|
| 29 |
27 28
|
bitr4i |
|
| 30 |
|
elssuni |
|
| 31 |
|
ssfi |
|
| 32 |
31
|
expcom |
|
| 33 |
32
|
con3d |
|
| 34 |
30 33
|
syl |
|
| 35 |
34
|
rexlimiv |
|
| 36 |
29 35
|
sylbi |
|
| 37 |
|
hashinf |
|
| 38 |
26 36 37
|
syl2an |
|
| 39 |
|
vex |
|
| 40 |
|
hashinf |
|
| 41 |
39 40
|
mpan |
|
| 42 |
41
|
reximi |
|
| 43 |
29 42
|
sylbi |
|
| 44 |
|
nfv |
|
| 45 |
|
nfre1 |
|
| 46 |
44 45
|
nfan |
|
| 47 |
|
simpl |
|
| 48 |
|
hashf2 |
|
| 49 |
|
ffvelcdm |
|
| 50 |
48 39 49
|
mp2an |
|
| 51 |
50
|
a1i |
|
| 52 |
|
simpr |
|
| 53 |
46 47 51 52
|
esumpinfval |
|
| 54 |
43 53
|
sylan2 |
|
| 55 |
38 54
|
eqtr4d |
|
| 56 |
55
|
3adant2 |
|
| 57 |
56
|
3adant1r |
|
| 58 |
57
|
3expa |
|
| 59 |
25 58
|
pm2.61dan |
|
| 60 |
|
pwfi |
|
| 61 |
|
pwuni |
|
| 62 |
|
ssfi |
|
| 63 |
61 62
|
mpan2 |
|
| 64 |
60 63
|
sylbi |
|
| 65 |
64
|
con3i |
|
| 66 |
26 65 37
|
syl2an |
|
| 67 |
|
nftru |
|
| 68 |
|
unrab |
|
| 69 |
|
exmid |
|
| 70 |
69
|
rgenw |
|
| 71 |
|
rabid2 |
|
| 72 |
70 71
|
mpbir |
|
| 73 |
68 72
|
eqtr4i |
|
| 74 |
73
|
a1i |
|
| 75 |
67 74
|
esumeq1d |
|
| 76 |
75
|
mptru |
|
| 77 |
|
nfrab1 |
|
| 78 |
|
nfrab1 |
|
| 79 |
|
rabexg |
|
| 80 |
|
rabexg |
|
| 81 |
|
rabnc |
|
| 82 |
81
|
a1i |
|
| 83 |
50
|
a1i |
|
| 84 |
50
|
a1i |
|
| 85 |
44 77 78 79 80 82 83 84
|
esumsplit |
|
| 86 |
76 85
|
eqtr3id |
|
| 87 |
86
|
adantr |
|
| 88 |
|
nfv |
|
| 89 |
80
|
adantr |
|
| 90 |
|
simpr |
|
| 91 |
|
dfrab3 |
|
| 92 |
|
hasheq0 |
|
| 93 |
39 92
|
ax-mp |
|
| 94 |
93
|
abbii |
|
| 95 |
|
df-sn |
|
| 96 |
94 95
|
eqtr4i |
|
| 97 |
96
|
ineq2i |
|
| 98 |
91 97
|
eqtri |
|
| 99 |
|
snfi |
|
| 100 |
|
inss2 |
|
| 101 |
|
ssfi |
|
| 102 |
99 100 101
|
mp2an |
|
| 103 |
98 102
|
eqeltri |
|
| 104 |
103
|
a1i |
|
| 105 |
|
difinf |
|
| 106 |
90 104 105
|
syl2anc |
|
| 107 |
|
notrab |
|
| 108 |
107
|
eleq1i |
|
| 109 |
106 108
|
sylnib |
|
| 110 |
50
|
a1i |
|
| 111 |
39
|
a1i |
|
| 112 |
|
simpr |
|
| 113 |
|
rabid |
|
| 114 |
112 113
|
sylib |
|
| 115 |
114
|
simprd |
|
| 116 |
93
|
biimpri |
|
| 117 |
116
|
necon3bi |
|
| 118 |
115 117
|
syl |
|
| 119 |
|
hashge1 |
|
| 120 |
111 118 119
|
syl2anc |
|
| 121 |
|
1xr |
|
| 122 |
121
|
a1i |
|
| 123 |
|
0lt1 |
|
| 124 |
123
|
a1i |
|
| 125 |
88 78 89 109 110 120 122 124
|
esumpinfsum |
|
| 126 |
125
|
oveq2d |
|
| 127 |
|
iccssxr |
|
| 128 |
79
|
adantr |
|
| 129 |
50
|
a1i |
|
| 130 |
129
|
ralrimiva |
|
| 131 |
77
|
esumcl |
|
| 132 |
128 130 131
|
syl2anc |
|
| 133 |
127 132
|
sselid |
|
| 134 |
|
xrge0neqmnf |
|
| 135 |
132 134
|
syl |
|
| 136 |
|
xaddpnf1 |
|
| 137 |
133 135 136
|
syl2anc |
|
| 138 |
87 126 137
|
3eqtrd |
|
| 139 |
66 138
|
eqtr4d |
|
| 140 |
139
|
adantlr |
|
| 141 |
59 140
|
pm2.61dan |
|