| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfdisj1 |  | 
						
							| 2 |  | nfv |  | 
						
							| 3 |  | nfv |  | 
						
							| 4 | 1 2 3 | nf3an |  | 
						
							| 5 |  | simp2 |  | 
						
							| 6 |  | simp3 |  | 
						
							| 7 |  | simp1 |  | 
						
							| 8 | 4 5 6 7 | hashunif |  | 
						
							| 9 |  | simpl |  | 
						
							| 10 |  | dfss3 |  | 
						
							| 11 |  | hashcl |  | 
						
							| 12 |  | nn0re |  | 
						
							| 13 |  | nn0ge0 |  | 
						
							| 14 |  | elrege0 |  | 
						
							| 15 | 12 13 14 | sylanbrc |  | 
						
							| 16 | 11 15 | syl |  | 
						
							| 17 | 16 | ralimi |  | 
						
							| 18 | 10 17 | sylbi |  | 
						
							| 19 | 18 | r19.21bi |  | 
						
							| 20 | 19 | adantll |  | 
						
							| 21 | 9 20 | esumpfinval |  | 
						
							| 22 | 21 | 3adant1 |  | 
						
							| 23 | 8 22 | eqtr4d |  | 
						
							| 24 | 23 | 3adant1l |  | 
						
							| 25 | 24 | 3expa |  | 
						
							| 26 |  | uniexg |  | 
						
							| 27 | 10 | notbii |  | 
						
							| 28 |  | rexnal |  | 
						
							| 29 | 27 28 | bitr4i |  | 
						
							| 30 |  | elssuni |  | 
						
							| 31 |  | ssfi |  | 
						
							| 32 | 31 | expcom |  | 
						
							| 33 | 32 | con3d |  | 
						
							| 34 | 30 33 | syl |  | 
						
							| 35 | 34 | rexlimiv |  | 
						
							| 36 | 29 35 | sylbi |  | 
						
							| 37 |  | hashinf |  | 
						
							| 38 | 26 36 37 | syl2an |  | 
						
							| 39 |  | vex |  | 
						
							| 40 |  | hashinf |  | 
						
							| 41 | 39 40 | mpan |  | 
						
							| 42 | 41 | reximi |  | 
						
							| 43 | 29 42 | sylbi |  | 
						
							| 44 |  | nfv |  | 
						
							| 45 |  | nfre1 |  | 
						
							| 46 | 44 45 | nfan |  | 
						
							| 47 |  | simpl |  | 
						
							| 48 |  | hashf2 |  | 
						
							| 49 |  | ffvelcdm |  | 
						
							| 50 | 48 39 49 | mp2an |  | 
						
							| 51 | 50 | a1i |  | 
						
							| 52 |  | simpr |  | 
						
							| 53 | 46 47 51 52 | esumpinfval |  | 
						
							| 54 | 43 53 | sylan2 |  | 
						
							| 55 | 38 54 | eqtr4d |  | 
						
							| 56 | 55 | 3adant2 |  | 
						
							| 57 | 56 | 3adant1r |  | 
						
							| 58 | 57 | 3expa |  | 
						
							| 59 | 25 58 | pm2.61dan |  | 
						
							| 60 |  | pwfi |  | 
						
							| 61 |  | pwuni |  | 
						
							| 62 |  | ssfi |  | 
						
							| 63 | 61 62 | mpan2 |  | 
						
							| 64 | 60 63 | sylbi |  | 
						
							| 65 | 64 | con3i |  | 
						
							| 66 | 26 65 37 | syl2an |  | 
						
							| 67 |  | nftru |  | 
						
							| 68 |  | unrab |  | 
						
							| 69 |  | exmid |  | 
						
							| 70 | 69 | rgenw |  | 
						
							| 71 |  | rabid2 |  | 
						
							| 72 | 70 71 | mpbir |  | 
						
							| 73 | 68 72 | eqtr4i |  | 
						
							| 74 | 73 | a1i |  | 
						
							| 75 | 67 74 | esumeq1d |  | 
						
							| 76 | 75 | mptru |  | 
						
							| 77 |  | nfrab1 |  | 
						
							| 78 |  | nfrab1 |  | 
						
							| 79 |  | rabexg |  | 
						
							| 80 |  | rabexg |  | 
						
							| 81 |  | rabnc |  | 
						
							| 82 | 81 | a1i |  | 
						
							| 83 | 50 | a1i |  | 
						
							| 84 | 50 | a1i |  | 
						
							| 85 | 44 77 78 79 80 82 83 84 | esumsplit |  | 
						
							| 86 | 76 85 | eqtr3id |  | 
						
							| 87 | 86 | adantr |  | 
						
							| 88 |  | nfv |  | 
						
							| 89 | 80 | adantr |  | 
						
							| 90 |  | simpr |  | 
						
							| 91 |  | dfrab3 |  | 
						
							| 92 |  | hasheq0 |  | 
						
							| 93 | 39 92 | ax-mp |  | 
						
							| 94 | 93 | abbii |  | 
						
							| 95 |  | df-sn |  | 
						
							| 96 | 94 95 | eqtr4i |  | 
						
							| 97 | 96 | ineq2i |  | 
						
							| 98 | 91 97 | eqtri |  | 
						
							| 99 |  | snfi |  | 
						
							| 100 |  | inss2 |  | 
						
							| 101 |  | ssfi |  | 
						
							| 102 | 99 100 101 | mp2an |  | 
						
							| 103 | 98 102 | eqeltri |  | 
						
							| 104 | 103 | a1i |  | 
						
							| 105 |  | difinf |  | 
						
							| 106 | 90 104 105 | syl2anc |  | 
						
							| 107 |  | notrab |  | 
						
							| 108 | 107 | eleq1i |  | 
						
							| 109 | 106 108 | sylnib |  | 
						
							| 110 | 50 | a1i |  | 
						
							| 111 | 39 | a1i |  | 
						
							| 112 |  | simpr |  | 
						
							| 113 |  | rabid |  | 
						
							| 114 | 112 113 | sylib |  | 
						
							| 115 | 114 | simprd |  | 
						
							| 116 | 93 | biimpri |  | 
						
							| 117 | 116 | necon3bi |  | 
						
							| 118 | 115 117 | syl |  | 
						
							| 119 |  | hashge1 |  | 
						
							| 120 | 111 118 119 | syl2anc |  | 
						
							| 121 |  | 1xr |  | 
						
							| 122 | 121 | a1i |  | 
						
							| 123 |  | 0lt1 |  | 
						
							| 124 | 123 | a1i |  | 
						
							| 125 | 88 78 89 109 110 120 122 124 | esumpinfsum |  | 
						
							| 126 | 125 | oveq2d |  | 
						
							| 127 |  | iccssxr |  | 
						
							| 128 | 79 | adantr |  | 
						
							| 129 | 50 | a1i |  | 
						
							| 130 | 129 | ralrimiva |  | 
						
							| 131 | 77 | esumcl |  | 
						
							| 132 | 128 130 131 | syl2anc |  | 
						
							| 133 | 127 132 | sselid |  | 
						
							| 134 |  | xrge0neqmnf |  | 
						
							| 135 | 132 134 | syl |  | 
						
							| 136 |  | xaddpnf1 |  | 
						
							| 137 | 133 135 136 | syl2anc |  | 
						
							| 138 | 87 126 137 | 3eqtrd |  | 
						
							| 139 | 66 138 | eqtr4d |  | 
						
							| 140 | 139 | adantlr |  | 
						
							| 141 | 59 140 | pm2.61dan |  |