Metamath Proof Explorer


Theorem hasheuni

Description: The cardinality of a disjoint union, not necessarily finite. cf. hashuni . (Contributed by Thierry Arnoux, 19-Nov-2016) (Revised by Thierry Arnoux, 2-Jan-2017) (Revised by Thierry Arnoux, 20-Jun-2017)

Ref Expression
Assertion hasheuni A V Disj x A x A = * x A x

Proof

Step Hyp Ref Expression
1 nfdisj1 x Disj x A x
2 nfv x A Fin
3 nfv x A Fin
4 1 2 3 nf3an x Disj x A x A Fin A Fin
5 simp2 Disj x A x A Fin A Fin A Fin
6 simp3 Disj x A x A Fin A Fin A Fin
7 simp1 Disj x A x A Fin A Fin Disj x A x
8 4 5 6 7 hashunif Disj x A x A Fin A Fin A = x A x
9 simpl A Fin A Fin A Fin
10 dfss3 A Fin x A x Fin
11 hashcl x Fin x 0
12 nn0re x 0 x
13 nn0ge0 x 0 0 x
14 elrege0 x 0 +∞ x 0 x
15 12 13 14 sylanbrc x 0 x 0 +∞
16 11 15 syl x Fin x 0 +∞
17 16 ralimi x A x Fin x A x 0 +∞
18 10 17 sylbi A Fin x A x 0 +∞
19 18 r19.21bi A Fin x A x 0 +∞
20 19 adantll A Fin A Fin x A x 0 +∞
21 9 20 esumpfinval A Fin A Fin * x A x = x A x
22 21 3adant1 Disj x A x A Fin A Fin * x A x = x A x
23 8 22 eqtr4d Disj x A x A Fin A Fin A = * x A x
24 23 3adant1l A V Disj x A x A Fin A Fin A = * x A x
25 24 3expa A V Disj x A x A Fin A Fin A = * x A x
26 uniexg A V A V
27 10 notbii ¬ A Fin ¬ x A x Fin
28 rexnal x A ¬ x Fin ¬ x A x Fin
29 27 28 bitr4i ¬ A Fin x A ¬ x Fin
30 elssuni x A x A
31 ssfi A Fin x A x Fin
32 31 expcom x A A Fin x Fin
33 32 con3d x A ¬ x Fin ¬ A Fin
34 30 33 syl x A ¬ x Fin ¬ A Fin
35 34 rexlimiv x A ¬ x Fin ¬ A Fin
36 29 35 sylbi ¬ A Fin ¬ A Fin
37 hashinf A V ¬ A Fin A = +∞
38 26 36 37 syl2an A V ¬ A Fin A = +∞
39 vex x V
40 hashinf x V ¬ x Fin x = +∞
41 39 40 mpan ¬ x Fin x = +∞
42 41 reximi x A ¬ x Fin x A x = +∞
43 29 42 sylbi ¬ A Fin x A x = +∞
44 nfv x A V
45 nfre1 x x A x = +∞
46 44 45 nfan x A V x A x = +∞
47 simpl A V x A x = +∞ A V
48 hashf2 . : V 0 +∞
49 ffvelrn . : V 0 +∞ x V x 0 +∞
50 48 39 49 mp2an x 0 +∞
51 50 a1i A V x A x = +∞ x A x 0 +∞
52 simpr A V x A x = +∞ x A x = +∞
53 46 47 51 52 esumpinfval A V x A x = +∞ * x A x = +∞
54 43 53 sylan2 A V ¬ A Fin * x A x = +∞
55 38 54 eqtr4d A V ¬ A Fin A = * x A x
56 55 3adant2 A V A Fin ¬ A Fin A = * x A x
57 56 3adant1r A V Disj x A x A Fin ¬ A Fin A = * x A x
58 57 3expa A V Disj x A x A Fin ¬ A Fin A = * x A x
59 25 58 pm2.61dan A V Disj x A x A Fin A = * x A x
60 pwfi A Fin 𝒫 A Fin
61 pwuni A 𝒫 A
62 ssfi 𝒫 A Fin A 𝒫 A A Fin
63 61 62 mpan2 𝒫 A Fin A Fin
64 60 63 sylbi A Fin A Fin
65 64 con3i ¬ A Fin ¬ A Fin
66 26 65 37 syl2an A V ¬ A Fin A = +∞
67 nftru x
68 unrab x A | x = 0 x A | ¬ x = 0 = x A | x = 0 ¬ x = 0
69 exmid x = 0 ¬ x = 0
70 69 rgenw x A x = 0 ¬ x = 0
71 rabid2 A = x A | x = 0 ¬ x = 0 x A x = 0 ¬ x = 0
72 70 71 mpbir A = x A | x = 0 ¬ x = 0
73 68 72 eqtr4i x A | x = 0 x A | ¬ x = 0 = A
74 73 a1i x A | x = 0 x A | ¬ x = 0 = A
75 67 74 esumeq1d * x x A | x = 0 x A | ¬ x = 0 x = * x A x
76 75 mptru * x x A | x = 0 x A | ¬ x = 0 x = * x A x
77 nfrab1 _ x x A | x = 0
78 nfrab1 _ x x A | ¬ x = 0
79 rabexg A V x A | x = 0 V
80 rabexg A V x A | ¬ x = 0 V
81 rabnc x A | x = 0 x A | ¬ x = 0 =
82 81 a1i A V x A | x = 0 x A | ¬ x = 0 =
83 50 a1i A V x x A | x = 0 x 0 +∞
84 50 a1i A V x x A | ¬ x = 0 x 0 +∞
85 44 77 78 79 80 82 83 84 esumsplit A V * x x A | x = 0 x A | ¬ x = 0 x = * x x A | x = 0 x + 𝑒 * x x A | ¬ x = 0 x
86 76 85 syl5eqr A V * x A x = * x x A | x = 0 x + 𝑒 * x x A | ¬ x = 0 x
87 86 adantr A V ¬ A Fin * x A x = * x x A | x = 0 x + 𝑒 * x x A | ¬ x = 0 x
88 nfv x A V ¬ A Fin
89 80 adantr A V ¬ A Fin x A | ¬ x = 0 V
90 simpr A V ¬ A Fin ¬ A Fin
91 dfrab3 x A | x = 0 = A x | x = 0
92 hasheq0 x V x = 0 x =
93 39 92 ax-mp x = 0 x =
94 93 abbii x | x = 0 = x | x =
95 df-sn = x | x =
96 94 95 eqtr4i x | x = 0 =
97 96 ineq2i A x | x = 0 = A
98 91 97 eqtri x A | x = 0 = A
99 snfi Fin
100 inss2 A
101 ssfi Fin A A Fin
102 99 100 101 mp2an A Fin
103 98 102 eqeltri x A | x = 0 Fin
104 103 a1i A V ¬ A Fin x A | x = 0 Fin
105 difinf ¬ A Fin x A | x = 0 Fin ¬ A x A | x = 0 Fin
106 90 104 105 syl2anc A V ¬ A Fin ¬ A x A | x = 0 Fin
107 notrab A x A | x = 0 = x A | ¬ x = 0
108 107 eleq1i A x A | x = 0 Fin x A | ¬ x = 0 Fin
109 106 108 sylnib A V ¬ A Fin ¬ x A | ¬ x = 0 Fin
110 50 a1i A V ¬ A Fin x x A | ¬ x = 0 x 0 +∞
111 39 a1i A V ¬ A Fin x x A | ¬ x = 0 x V
112 simpr A V ¬ A Fin x x A | ¬ x = 0 x x A | ¬ x = 0
113 rabid x x A | ¬ x = 0 x A ¬ x = 0
114 112 113 sylib A V ¬ A Fin x x A | ¬ x = 0 x A ¬ x = 0
115 114 simprd A V ¬ A Fin x x A | ¬ x = 0 ¬ x = 0
116 93 biimpri x = x = 0
117 116 necon3bi ¬ x = 0 x
118 115 117 syl A V ¬ A Fin x x A | ¬ x = 0 x
119 hashge1 x V x 1 x
120 111 118 119 syl2anc A V ¬ A Fin x x A | ¬ x = 0 1 x
121 1xr 1 *
122 121 a1i A V ¬ A Fin 1 *
123 0lt1 0 < 1
124 123 a1i A V ¬ A Fin 0 < 1
125 88 78 89 109 110 120 122 124 esumpinfsum A V ¬ A Fin * x x A | ¬ x = 0 x = +∞
126 125 oveq2d A V ¬ A Fin * x x A | x = 0 x + 𝑒 * x x A | ¬ x = 0 x = * x x A | x = 0 x + 𝑒 +∞
127 iccssxr 0 +∞ *
128 79 adantr A V ¬ A Fin x A | x = 0 V
129 50 a1i A V ¬ A Fin x x A | x = 0 x 0 +∞
130 129 ralrimiva A V ¬ A Fin x x A | x = 0 x 0 +∞
131 77 esumcl x A | x = 0 V x x A | x = 0 x 0 +∞ * x x A | x = 0 x 0 +∞
132 128 130 131 syl2anc A V ¬ A Fin * x x A | x = 0 x 0 +∞
133 127 132 sseldi A V ¬ A Fin * x x A | x = 0 x *
134 xrge0neqmnf * x x A | x = 0 x 0 +∞ * x x A | x = 0 x −∞
135 132 134 syl A V ¬ A Fin * x x A | x = 0 x −∞
136 xaddpnf1 * x x A | x = 0 x * * x x A | x = 0 x −∞ * x x A | x = 0 x + 𝑒 +∞ = +∞
137 133 135 136 syl2anc A V ¬ A Fin * x x A | x = 0 x + 𝑒 +∞ = +∞
138 87 126 137 3eqtrd A V ¬ A Fin * x A x = +∞
139 66 138 eqtr4d A V ¬ A Fin A = * x A x
140 139 adantlr A V Disj x A x ¬ A Fin A = * x A x
141 59 140 pm2.61dan A V Disj x A x A = * x A x