| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfdisj1 | ⊢ Ⅎ 𝑥 Disj  𝑥  ∈  𝐴 𝑥 | 
						
							| 2 |  | nfv | ⊢ Ⅎ 𝑥 𝐴  ∈  Fin | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑥 𝐴  ⊆  Fin | 
						
							| 4 | 1 2 3 | nf3an | ⊢ Ⅎ 𝑥 ( Disj  𝑥  ∈  𝐴 𝑥  ∧  𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin ) | 
						
							| 5 |  | simp2 | ⊢ ( ( Disj  𝑥  ∈  𝐴 𝑥  ∧  𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  𝐴  ∈  Fin ) | 
						
							| 6 |  | simp3 | ⊢ ( ( Disj  𝑥  ∈  𝐴 𝑥  ∧  𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  𝐴  ⊆  Fin ) | 
						
							| 7 |  | simp1 | ⊢ ( ( Disj  𝑥  ∈  𝐴 𝑥  ∧  𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  Disj  𝑥  ∈  𝐴 𝑥 ) | 
						
							| 8 | 4 5 6 7 | hashunif | ⊢ ( ( Disj  𝑥  ∈  𝐴 𝑥  ∧  𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  𝐴  ∈  Fin ) | 
						
							| 10 |  | dfss3 | ⊢ ( 𝐴  ⊆  Fin  ↔  ∀ 𝑥  ∈  𝐴 𝑥  ∈  Fin ) | 
						
							| 11 |  | hashcl | ⊢ ( 𝑥  ∈  Fin  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 12 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑥 )  ∈  ℕ0  →  ( ♯ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 13 |  | nn0ge0 | ⊢ ( ( ♯ ‘ 𝑥 )  ∈  ℕ0  →  0  ≤  ( ♯ ‘ 𝑥 ) ) | 
						
							| 14 |  | elrege0 | ⊢ ( ( ♯ ‘ 𝑥 )  ∈  ( 0 [,) +∞ )  ↔  ( ( ♯ ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 15 | 12 13 14 | sylanbrc | ⊢ ( ( ♯ ‘ 𝑥 )  ∈  ℕ0  →  ( ♯ ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 16 | 11 15 | syl | ⊢ ( 𝑥  ∈  Fin  →  ( ♯ ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 17 | 16 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝐴 𝑥  ∈  Fin  →  ∀ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 18 | 10 17 | sylbi | ⊢ ( 𝐴  ⊆  Fin  →  ∀ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 19 | 18 | r19.21bi | ⊢ ( ( 𝐴  ⊆  Fin  ∧  𝑥  ∈  𝐴 )  →  ( ♯ ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 20 | 19 | adantll | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑥  ∈  𝐴 )  →  ( ♯ ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 21 | 9 20 | esumpfinval | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  Σ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 22 | 21 | 3adant1 | ⊢ ( ( Disj  𝑥  ∈  𝐴 𝑥  ∧  𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  Σ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 23 | 8 22 | eqtr4d | ⊢ ( ( Disj  𝑥  ∈  𝐴 𝑥  ∧  𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 24 | 23 | 3adant1l | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  Disj  𝑥  ∈  𝐴 𝑥 )  ∧  𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 25 | 24 | 3expa | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  Disj  𝑥  ∈  𝐴 𝑥 )  ∧  𝐴  ∈  Fin )  ∧  𝐴  ⊆  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 26 |  | uniexg | ⊢ ( 𝐴  ∈  𝑉  →  ∪  𝐴  ∈  V ) | 
						
							| 27 | 10 | notbii | ⊢ ( ¬  𝐴  ⊆  Fin  ↔  ¬  ∀ 𝑥  ∈  𝐴 𝑥  ∈  Fin ) | 
						
							| 28 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  𝐴 ¬  𝑥  ∈  Fin  ↔  ¬  ∀ 𝑥  ∈  𝐴 𝑥  ∈  Fin ) | 
						
							| 29 | 27 28 | bitr4i | ⊢ ( ¬  𝐴  ⊆  Fin  ↔  ∃ 𝑥  ∈  𝐴 ¬  𝑥  ∈  Fin ) | 
						
							| 30 |  | elssuni | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ⊆  ∪  𝐴 ) | 
						
							| 31 |  | ssfi | ⊢ ( ( ∪  𝐴  ∈  Fin  ∧  𝑥  ⊆  ∪  𝐴 )  →  𝑥  ∈  Fin ) | 
						
							| 32 | 31 | expcom | ⊢ ( 𝑥  ⊆  ∪  𝐴  →  ( ∪  𝐴  ∈  Fin  →  𝑥  ∈  Fin ) ) | 
						
							| 33 | 32 | con3d | ⊢ ( 𝑥  ⊆  ∪  𝐴  →  ( ¬  𝑥  ∈  Fin  →  ¬  ∪  𝐴  ∈  Fin ) ) | 
						
							| 34 | 30 33 | syl | ⊢ ( 𝑥  ∈  𝐴  →  ( ¬  𝑥  ∈  Fin  →  ¬  ∪  𝐴  ∈  Fin ) ) | 
						
							| 35 | 34 | rexlimiv | ⊢ ( ∃ 𝑥  ∈  𝐴 ¬  𝑥  ∈  Fin  →  ¬  ∪  𝐴  ∈  Fin ) | 
						
							| 36 | 29 35 | sylbi | ⊢ ( ¬  𝐴  ⊆  Fin  →  ¬  ∪  𝐴  ∈  Fin ) | 
						
							| 37 |  | hashinf | ⊢ ( ( ∪  𝐴  ∈  V  ∧  ¬  ∪  𝐴  ∈  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  +∞ ) | 
						
							| 38 | 26 36 37 | syl2an | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ⊆  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  +∞ ) | 
						
							| 39 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 40 |  | hashinf | ⊢ ( ( 𝑥  ∈  V  ∧  ¬  𝑥  ∈  Fin )  →  ( ♯ ‘ 𝑥 )  =  +∞ ) | 
						
							| 41 | 39 40 | mpan | ⊢ ( ¬  𝑥  ∈  Fin  →  ( ♯ ‘ 𝑥 )  =  +∞ ) | 
						
							| 42 | 41 | reximi | ⊢ ( ∃ 𝑥  ∈  𝐴 ¬  𝑥  ∈  Fin  →  ∃ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  +∞ ) | 
						
							| 43 | 29 42 | sylbi | ⊢ ( ¬  𝐴  ⊆  Fin  →  ∃ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  +∞ ) | 
						
							| 44 |  | nfv | ⊢ Ⅎ 𝑥 𝐴  ∈  𝑉 | 
						
							| 45 |  | nfre1 | ⊢ Ⅎ 𝑥 ∃ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  +∞ | 
						
							| 46 | 44 45 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  +∞ ) | 
						
							| 47 |  | simpl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  +∞ )  →  𝐴  ∈  𝑉 ) | 
						
							| 48 |  | hashf2 | ⊢ ♯ : V ⟶ ( 0 [,] +∞ ) | 
						
							| 49 |  | ffvelcdm | ⊢ ( ( ♯ : V ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  V )  →  ( ♯ ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 50 | 48 39 49 | mp2an | ⊢ ( ♯ ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) | 
						
							| 51 | 50 | a1i | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  +∞ )  ∧  𝑥  ∈  𝐴 )  →  ( ♯ ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 52 |  | simpr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  +∞ )  →  ∃ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  +∞ ) | 
						
							| 53 | 46 47 51 52 | esumpinfval | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  +∞ )  →  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  +∞ ) | 
						
							| 54 | 43 53 | sylan2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ⊆  Fin )  →  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  +∞ ) | 
						
							| 55 | 38 54 | eqtr4d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ⊆  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 56 | 55 | 3adant2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  ∈  Fin  ∧  ¬  𝐴  ⊆  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 57 | 56 | 3adant1r | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  Disj  𝑥  ∈  𝐴 𝑥 )  ∧  𝐴  ∈  Fin  ∧  ¬  𝐴  ⊆  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 58 | 57 | 3expa | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  Disj  𝑥  ∈  𝐴 𝑥 )  ∧  𝐴  ∈  Fin )  ∧  ¬  𝐴  ⊆  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 59 | 25 58 | pm2.61dan | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  Disj  𝑥  ∈  𝐴 𝑥 )  ∧  𝐴  ∈  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 60 |  | pwfi | ⊢ ( ∪  𝐴  ∈  Fin  ↔  𝒫  ∪  𝐴  ∈  Fin ) | 
						
							| 61 |  | pwuni | ⊢ 𝐴  ⊆  𝒫  ∪  𝐴 | 
						
							| 62 |  | ssfi | ⊢ ( ( 𝒫  ∪  𝐴  ∈  Fin  ∧  𝐴  ⊆  𝒫  ∪  𝐴 )  →  𝐴  ∈  Fin ) | 
						
							| 63 | 61 62 | mpan2 | ⊢ ( 𝒫  ∪  𝐴  ∈  Fin  →  𝐴  ∈  Fin ) | 
						
							| 64 | 60 63 | sylbi | ⊢ ( ∪  𝐴  ∈  Fin  →  𝐴  ∈  Fin ) | 
						
							| 65 | 64 | con3i | ⊢ ( ¬  𝐴  ∈  Fin  →  ¬  ∪  𝐴  ∈  Fin ) | 
						
							| 66 | 26 65 37 | syl2an | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  +∞ ) | 
						
							| 67 |  | nftru | ⊢ Ⅎ 𝑥 ⊤ | 
						
							| 68 |  | unrab | ⊢ ( { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  ∪  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } )  =  { 𝑥  ∈  𝐴  ∣  ( ( ♯ ‘ 𝑥 )  =  0  ∨  ¬  ( ♯ ‘ 𝑥 )  =  0 ) } | 
						
							| 69 |  | exmid | ⊢ ( ( ♯ ‘ 𝑥 )  =  0  ∨  ¬  ( ♯ ‘ 𝑥 )  =  0 ) | 
						
							| 70 | 69 | rgenw | ⊢ ∀ 𝑥  ∈  𝐴 ( ( ♯ ‘ 𝑥 )  =  0  ∨  ¬  ( ♯ ‘ 𝑥 )  =  0 ) | 
						
							| 71 |  | rabid2 | ⊢ ( 𝐴  =  { 𝑥  ∈  𝐴  ∣  ( ( ♯ ‘ 𝑥 )  =  0  ∨  ¬  ( ♯ ‘ 𝑥 )  =  0 ) }  ↔  ∀ 𝑥  ∈  𝐴 ( ( ♯ ‘ 𝑥 )  =  0  ∨  ¬  ( ♯ ‘ 𝑥 )  =  0 ) ) | 
						
							| 72 | 70 71 | mpbir | ⊢ 𝐴  =  { 𝑥  ∈  𝐴  ∣  ( ( ♯ ‘ 𝑥 )  =  0  ∨  ¬  ( ♯ ‘ 𝑥 )  =  0 ) } | 
						
							| 73 | 68 72 | eqtr4i | ⊢ ( { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  ∪  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } )  =  𝐴 | 
						
							| 74 | 73 | a1i | ⊢ ( ⊤  →  ( { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  ∪  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } )  =  𝐴 ) | 
						
							| 75 | 67 74 | esumeq1d | ⊢ ( ⊤  →  Σ* 𝑥  ∈  ( { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  ∪  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } ) ( ♯ ‘ 𝑥 )  =  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 76 | 75 | mptru | ⊢ Σ* 𝑥  ∈  ( { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  ∪  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } ) ( ♯ ‘ 𝑥 )  =  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) | 
						
							| 77 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } | 
						
							| 78 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } | 
						
							| 79 |  | rabexg | ⊢ ( 𝐴  ∈  𝑉  →  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  ∈  V ) | 
						
							| 80 |  | rabexg | ⊢ ( 𝐴  ∈  𝑉  →  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 }  ∈  V ) | 
						
							| 81 |  | rabnc | ⊢ ( { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  ∩  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } )  =  ∅ | 
						
							| 82 | 81 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ( { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  ∩  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } )  =  ∅ ) | 
						
							| 83 | 50 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } )  →  ( ♯ ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 84 | 50 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } )  →  ( ♯ ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 85 | 44 77 78 79 80 82 83 84 | esumsplit | ⊢ ( 𝐴  ∈  𝑉  →  Σ* 𝑥  ∈  ( { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  ∪  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } ) ( ♯ ‘ 𝑥 )  =  ( Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  +𝑒  Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 86 | 76 85 | eqtr3id | ⊢ ( 𝐴  ∈  𝑉  →  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  ( Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  +𝑒  Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  ( Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  +𝑒  Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 88 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin ) | 
						
							| 89 | 80 | adantr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 }  ∈  V ) | 
						
							| 90 |  | simpr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ¬  𝐴  ∈  Fin ) | 
						
							| 91 |  | dfrab3 | ⊢ { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  =  ( 𝐴  ∩  { 𝑥  ∣  ( ♯ ‘ 𝑥 )  =  0 } ) | 
						
							| 92 |  | hasheq0 | ⊢ ( 𝑥  ∈  V  →  ( ( ♯ ‘ 𝑥 )  =  0  ↔  𝑥  =  ∅ ) ) | 
						
							| 93 | 39 92 | ax-mp | ⊢ ( ( ♯ ‘ 𝑥 )  =  0  ↔  𝑥  =  ∅ ) | 
						
							| 94 | 93 | abbii | ⊢ { 𝑥  ∣  ( ♯ ‘ 𝑥 )  =  0 }  =  { 𝑥  ∣  𝑥  =  ∅ } | 
						
							| 95 |  | df-sn | ⊢ { ∅ }  =  { 𝑥  ∣  𝑥  =  ∅ } | 
						
							| 96 | 94 95 | eqtr4i | ⊢ { 𝑥  ∣  ( ♯ ‘ 𝑥 )  =  0 }  =  { ∅ } | 
						
							| 97 | 96 | ineq2i | ⊢ ( 𝐴  ∩  { 𝑥  ∣  ( ♯ ‘ 𝑥 )  =  0 } )  =  ( 𝐴  ∩  { ∅ } ) | 
						
							| 98 | 91 97 | eqtri | ⊢ { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  =  ( 𝐴  ∩  { ∅ } ) | 
						
							| 99 |  | snfi | ⊢ { ∅ }  ∈  Fin | 
						
							| 100 |  | inss2 | ⊢ ( 𝐴  ∩  { ∅ } )  ⊆  { ∅ } | 
						
							| 101 |  | ssfi | ⊢ ( ( { ∅ }  ∈  Fin  ∧  ( 𝐴  ∩  { ∅ } )  ⊆  { ∅ } )  →  ( 𝐴  ∩  { ∅ } )  ∈  Fin ) | 
						
							| 102 | 99 100 101 | mp2an | ⊢ ( 𝐴  ∩  { ∅ } )  ∈  Fin | 
						
							| 103 | 98 102 | eqeltri | ⊢ { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  ∈  Fin | 
						
							| 104 | 103 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  ∈  Fin ) | 
						
							| 105 |  | difinf | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  ∈  Fin )  →  ¬  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } )  ∈  Fin ) | 
						
							| 106 | 90 104 105 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ¬  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } )  ∈  Fin ) | 
						
							| 107 |  | notrab | ⊢ ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } )  =  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } | 
						
							| 108 | 107 | eleq1i | ⊢ ( ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } )  ∈  Fin  ↔  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 }  ∈  Fin ) | 
						
							| 109 | 106 108 | sylnib | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ¬  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 }  ∈  Fin ) | 
						
							| 110 | 50 | a1i | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } )  →  ( ♯ ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 111 | 39 | a1i | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } )  →  𝑥  ∈  V ) | 
						
							| 112 |  | simpr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } )  →  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } ) | 
						
							| 113 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 }  ↔  ( 𝑥  ∈  𝐴  ∧  ¬  ( ♯ ‘ 𝑥 )  =  0 ) ) | 
						
							| 114 | 112 113 | sylib | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } )  →  ( 𝑥  ∈  𝐴  ∧  ¬  ( ♯ ‘ 𝑥 )  =  0 ) ) | 
						
							| 115 | 114 | simprd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } )  →  ¬  ( ♯ ‘ 𝑥 )  =  0 ) | 
						
							| 116 | 93 | biimpri | ⊢ ( 𝑥  =  ∅  →  ( ♯ ‘ 𝑥 )  =  0 ) | 
						
							| 117 | 116 | necon3bi | ⊢ ( ¬  ( ♯ ‘ 𝑥 )  =  0  →  𝑥  ≠  ∅ ) | 
						
							| 118 | 115 117 | syl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } )  →  𝑥  ≠  ∅ ) | 
						
							| 119 |  | hashge1 | ⊢ ( ( 𝑥  ∈  V  ∧  𝑥  ≠  ∅ )  →  1  ≤  ( ♯ ‘ 𝑥 ) ) | 
						
							| 120 | 111 118 119 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } )  →  1  ≤  ( ♯ ‘ 𝑥 ) ) | 
						
							| 121 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 122 | 121 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  1  ∈  ℝ* ) | 
						
							| 123 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 124 | 123 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  0  <  1 ) | 
						
							| 125 | 88 78 89 109 110 120 122 124 | esumpinfsum | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  =  +∞ ) | 
						
							| 126 | 125 | oveq2d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ( Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  +𝑒  Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 ) )  =  ( Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  +𝑒  +∞ ) ) | 
						
							| 127 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 128 | 79 | adantr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  ∈  V ) | 
						
							| 129 | 50 | a1i | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } )  →  ( ♯ ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 130 | 129 | ralrimiva | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ∀ 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 131 | 77 | esumcl | ⊢ ( ( { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 }  ∈  V  ∧  ∀ 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) )  →  Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 132 | 128 130 131 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 133 | 127 132 | sselid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 134 |  | xrge0neqmnf | ⊢ ( Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  ∈  ( 0 [,] +∞ )  →  Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  ≠  -∞ ) | 
						
							| 135 | 132 134 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  ≠  -∞ ) | 
						
							| 136 |  | xaddpnf1 | ⊢ ( ( Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  ∈  ℝ*  ∧  Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  ≠  -∞ )  →  ( Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  +𝑒  +∞ )  =  +∞ ) | 
						
							| 137 | 133 135 136 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ( Σ* 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  0 } ( ♯ ‘ 𝑥 )  +𝑒  +∞ )  =  +∞ ) | 
						
							| 138 | 87 126 137 | 3eqtrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  +∞ ) | 
						
							| 139 | 66 138 | eqtr4d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 140 | 139 | adantlr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  Disj  𝑥  ∈  𝐴 𝑥 )  ∧  ¬  𝐴  ∈  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 141 | 59 140 | pm2.61dan | ⊢ ( ( 𝐴  ∈  𝑉  ∧  Disj  𝑥  ∈  𝐴 𝑥 )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ* 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) |