Step |
Hyp |
Ref |
Expression |
1 |
|
hashiunf.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
hashiunf.3 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
hashunif.4 |
⊢ ( 𝜑 → 𝐴 ⊆ Fin ) |
4 |
|
hashunif.5 |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝑥 ) |
5 |
|
uniiun |
⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
6 |
5
|
fveq2i |
⊢ ( ♯ ‘ ∪ 𝐴 ) = ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝑥 ) |
7 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ Fin ) |
8 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
9 |
8
|
cbvdisjv |
⊢ ( Disj 𝑥 ∈ 𝐴 𝑥 ↔ Disj 𝑦 ∈ 𝐴 𝑦 ) |
10 |
4 9
|
sylib |
⊢ ( 𝜑 → Disj 𝑦 ∈ 𝐴 𝑦 ) |
11 |
2 7 10
|
hashiun |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑦 ∈ 𝐴 𝑦 ) = Σ 𝑦 ∈ 𝐴 ( ♯ ‘ 𝑦 ) ) |
12 |
8
|
cbviunv |
⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝑦 ∈ 𝐴 𝑦 |
13 |
12
|
a1i |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝑦 ∈ 𝐴 𝑦 ) |
14 |
13
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝑥 ) = ( ♯ ‘ ∪ 𝑦 ∈ 𝐴 𝑦 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
16 |
15
|
cbvsumv |
⊢ Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝑥 ) = Σ 𝑦 ∈ 𝐴 ( ♯ ‘ 𝑦 ) |
17 |
16
|
a1i |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝑥 ) = Σ 𝑦 ∈ 𝐴 ( ♯ ‘ 𝑦 ) ) |
18 |
11 14 17
|
3eqtr4d |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝑥 ) = Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝑥 ) ) |
19 |
6 18
|
syl5eq |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝐴 ) = Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝑥 ) ) |