| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashiunf.1 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | hashiunf.3 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 3 |  | hashunif.4 | ⊢ ( 𝜑  →  𝐴  ⊆  Fin ) | 
						
							| 4 |  | hashunif.5 | ⊢ ( 𝜑  →  Disj  𝑥  ∈  𝐴 𝑥 ) | 
						
							| 5 |  | uniiun | ⊢ ∪  𝐴  =  ∪  𝑥  ∈  𝐴 𝑥 | 
						
							| 6 | 5 | fveq2i | ⊢ ( ♯ ‘ ∪  𝐴 )  =  ( ♯ ‘ ∪  𝑥  ∈  𝐴 𝑥 ) | 
						
							| 7 | 3 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  Fin ) | 
						
							| 8 |  | id | ⊢ ( 𝑥  =  𝑦  →  𝑥  =  𝑦 ) | 
						
							| 9 | 8 | cbvdisjv | ⊢ ( Disj  𝑥  ∈  𝐴 𝑥  ↔  Disj  𝑦  ∈  𝐴 𝑦 ) | 
						
							| 10 | 4 9 | sylib | ⊢ ( 𝜑  →  Disj  𝑦  ∈  𝐴 𝑦 ) | 
						
							| 11 | 2 7 10 | hashiun | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑦  ∈  𝐴 𝑦 )  =  Σ 𝑦  ∈  𝐴 ( ♯ ‘ 𝑦 ) ) | 
						
							| 12 | 8 | cbviunv | ⊢ ∪  𝑥  ∈  𝐴 𝑥  =  ∪  𝑦  ∈  𝐴 𝑦 | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ∪  𝑥  ∈  𝐴 𝑥  =  ∪  𝑦  ∈  𝐴 𝑦 ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑥  ∈  𝐴 𝑥 )  =  ( ♯ ‘ ∪  𝑦  ∈  𝐴 𝑦 ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 16 | 15 | cbvsumv | ⊢ Σ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  Σ 𝑦  ∈  𝐴 ( ♯ ‘ 𝑦 ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 )  =  Σ 𝑦  ∈  𝐴 ( ♯ ‘ 𝑦 ) ) | 
						
							| 18 | 11 14 17 | 3eqtr4d | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑥  ∈  𝐴 𝑥 )  =  Σ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) | 
						
							| 19 | 6 18 | eqtrid | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝐴 )  =  Σ 𝑥  ∈  𝐴 ( ♯ ‘ 𝑥 ) ) |