Metamath Proof Explorer


Theorem hashunif

Description: The cardinality of a disjoint finite union of finite sets. Cf. hashuni . (Contributed by Thierry Arnoux, 17-Feb-2017)

Ref Expression
Hypotheses hashiunf.1 xφ
hashiunf.3 φAFin
hashunif.4 φAFin
hashunif.5 φDisjxAx
Assertion hashunif φA=xAx

Proof

Step Hyp Ref Expression
1 hashiunf.1 xφ
2 hashiunf.3 φAFin
3 hashunif.4 φAFin
4 hashunif.5 φDisjxAx
5 uniiun A=xAx
6 5 fveq2i A=xAx
7 3 sselda φyAyFin
8 id x=yx=y
9 8 cbvdisjv DisjxAxDisjyAy
10 4 9 sylib φDisjyAy
11 2 7 10 hashiun φyAy=yAy
12 8 cbviunv xAx=yAy
13 12 a1i φxAx=yAy
14 13 fveq2d φxAx=yAy
15 fveq2 x=yx=y
16 15 cbvsumv xAx=yAy
17 16 a1i φxAx=yAy
18 11 14 17 3eqtr4d φxAx=xAx
19 6 18 eqtrid φA=xAx