Step |
Hyp |
Ref |
Expression |
1 |
|
hashiunf.1 |
|- F/ x ph |
2 |
|
hashiunf.3 |
|- ( ph -> A e. Fin ) |
3 |
|
hashunif.4 |
|- ( ph -> A C_ Fin ) |
4 |
|
hashunif.5 |
|- ( ph -> Disj_ x e. A x ) |
5 |
|
uniiun |
|- U. A = U_ x e. A x |
6 |
5
|
fveq2i |
|- ( # ` U. A ) = ( # ` U_ x e. A x ) |
7 |
3
|
sselda |
|- ( ( ph /\ y e. A ) -> y e. Fin ) |
8 |
|
id |
|- ( x = y -> x = y ) |
9 |
8
|
cbvdisjv |
|- ( Disj_ x e. A x <-> Disj_ y e. A y ) |
10 |
4 9
|
sylib |
|- ( ph -> Disj_ y e. A y ) |
11 |
2 7 10
|
hashiun |
|- ( ph -> ( # ` U_ y e. A y ) = sum_ y e. A ( # ` y ) ) |
12 |
8
|
cbviunv |
|- U_ x e. A x = U_ y e. A y |
13 |
12
|
a1i |
|- ( ph -> U_ x e. A x = U_ y e. A y ) |
14 |
13
|
fveq2d |
|- ( ph -> ( # ` U_ x e. A x ) = ( # ` U_ y e. A y ) ) |
15 |
|
fveq2 |
|- ( x = y -> ( # ` x ) = ( # ` y ) ) |
16 |
15
|
cbvsumv |
|- sum_ x e. A ( # ` x ) = sum_ y e. A ( # ` y ) |
17 |
16
|
a1i |
|- ( ph -> sum_ x e. A ( # ` x ) = sum_ y e. A ( # ` y ) ) |
18 |
11 14 17
|
3eqtr4d |
|- ( ph -> ( # ` U_ x e. A x ) = sum_ x e. A ( # ` x ) ) |
19 |
6 18
|
syl5eq |
|- ( ph -> ( # ` U. A ) = sum_ x e. A ( # ` x ) ) |