| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashiunf.1 |  |-  F/ x ph | 
						
							| 2 |  | hashiunf.3 |  |-  ( ph -> A e. Fin ) | 
						
							| 3 |  | hashunif.4 |  |-  ( ph -> A C_ Fin ) | 
						
							| 4 |  | hashunif.5 |  |-  ( ph -> Disj_ x e. A x ) | 
						
							| 5 |  | uniiun |  |-  U. A = U_ x e. A x | 
						
							| 6 | 5 | fveq2i |  |-  ( # ` U. A ) = ( # ` U_ x e. A x ) | 
						
							| 7 | 3 | sselda |  |-  ( ( ph /\ y e. A ) -> y e. Fin ) | 
						
							| 8 |  | id |  |-  ( x = y -> x = y ) | 
						
							| 9 | 8 | cbvdisjv |  |-  ( Disj_ x e. A x <-> Disj_ y e. A y ) | 
						
							| 10 | 4 9 | sylib |  |-  ( ph -> Disj_ y e. A y ) | 
						
							| 11 | 2 7 10 | hashiun |  |-  ( ph -> ( # ` U_ y e. A y ) = sum_ y e. A ( # ` y ) ) | 
						
							| 12 | 8 | cbviunv |  |-  U_ x e. A x = U_ y e. A y | 
						
							| 13 | 12 | a1i |  |-  ( ph -> U_ x e. A x = U_ y e. A y ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ph -> ( # ` U_ x e. A x ) = ( # ` U_ y e. A y ) ) | 
						
							| 15 |  | fveq2 |  |-  ( x = y -> ( # ` x ) = ( # ` y ) ) | 
						
							| 16 | 15 | cbvsumv |  |-  sum_ x e. A ( # ` x ) = sum_ y e. A ( # ` y ) | 
						
							| 17 | 16 | a1i |  |-  ( ph -> sum_ x e. A ( # ` x ) = sum_ y e. A ( # ` y ) ) | 
						
							| 18 | 11 14 17 | 3eqtr4d |  |-  ( ph -> ( # ` U_ x e. A x ) = sum_ x e. A ( # ` x ) ) | 
						
							| 19 | 6 18 | eqtrid |  |-  ( ph -> ( # ` U. A ) = sum_ x e. A ( # ` x ) ) |