| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveqeq2 |  |-  ( P = ( E " ran F ) -> ( ( # ` P ) = N <-> ( # ` ( E " ran F ) ) = N ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) /\ P = ( E " ran F ) ) -> ( ( # ` P ) = N <-> ( # ` ( E " ran F ) ) = N ) ) | 
						
							| 3 |  | hashimarn |  |-  ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ( # ` ( E " ran F ) ) = ( # ` F ) ) ) | 
						
							| 4 | 3 | impcom |  |-  ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) -> ( # ` ( E " ran F ) ) = ( # ` F ) ) | 
						
							| 5 |  | id |  |-  ( ( # ` ( E " ran F ) ) = N -> ( # ` ( E " ran F ) ) = N ) | 
						
							| 6 | 4 5 | sylan9req |  |-  ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) /\ ( # ` ( E " ran F ) ) = N ) -> ( # ` F ) = N ) | 
						
							| 7 | 6 | ex |  |-  ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) -> ( ( # ` ( E " ran F ) ) = N -> ( # ` F ) = N ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) /\ P = ( E " ran F ) ) -> ( ( # ` ( E " ran F ) ) = N -> ( # ` F ) = N ) ) | 
						
							| 9 | 2 8 | sylbid |  |-  ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) /\ P = ( E " ran F ) ) -> ( ( # ` P ) = N -> ( # ` F ) = N ) ) | 
						
							| 10 | 9 | exp31 |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( P = ( E " ran F ) -> ( ( # ` P ) = N -> ( # ` F ) = N ) ) ) ) | 
						
							| 11 | 10 | com23 |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ( P = ( E " ran F ) -> ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( ( # ` P ) = N -> ( # ` F ) = N ) ) ) ) | 
						
							| 12 | 11 | com34 |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ( P = ( E " ran F ) -> ( ( # ` P ) = N -> ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( # ` F ) = N ) ) ) ) | 
						
							| 13 | 12 | 3imp |  |-  ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ P = ( E " ran F ) /\ ( # ` P ) = N ) -> ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( # ` F ) = N ) ) | 
						
							| 14 | 13 | com12 |  |-  ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ P = ( E " ran F ) /\ ( # ` P ) = N ) -> ( # ` F ) = N ) ) |