| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1f |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> F : ( 0 ..^ ( # ` F ) ) --> dom E ) | 
						
							| 2 | 1 | frnd |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ran F C_ dom E ) | 
						
							| 3 | 2 | adantl |  |-  ( ( ( E : dom E -1-1-> ran E /\ E e. V ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E ) -> ran F C_ dom E ) | 
						
							| 4 |  | ssdmres |  |-  ( ran F C_ dom E <-> dom ( E |` ran F ) = ran F ) | 
						
							| 5 | 3 4 | sylib |  |-  ( ( ( E : dom E -1-1-> ran E /\ E e. V ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E ) -> dom ( E |` ran F ) = ran F ) | 
						
							| 6 | 5 | fveq2d |  |-  ( ( ( E : dom E -1-1-> ran E /\ E e. V ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E ) -> ( # ` dom ( E |` ran F ) ) = ( # ` ran F ) ) | 
						
							| 7 |  | df-ima |  |-  ( E " ran F ) = ran ( E |` ran F ) | 
						
							| 8 | 7 | fveq2i |  |-  ( # ` ( E " ran F ) ) = ( # ` ran ( E |` ran F ) ) | 
						
							| 9 |  | f1fun |  |-  ( E : dom E -1-1-> ran E -> Fun E ) | 
						
							| 10 |  | funres |  |-  ( Fun E -> Fun ( E |` ran F ) ) | 
						
							| 11 | 10 | funfnd |  |-  ( Fun E -> ( E |` ran F ) Fn dom ( E |` ran F ) ) | 
						
							| 12 | 9 11 | syl |  |-  ( E : dom E -1-1-> ran E -> ( E |` ran F ) Fn dom ( E |` ran F ) ) | 
						
							| 13 | 12 | ad2antrr |  |-  ( ( ( E : dom E -1-1-> ran E /\ E e. V ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E ) -> ( E |` ran F ) Fn dom ( E |` ran F ) ) | 
						
							| 14 |  | hashfn |  |-  ( ( E |` ran F ) Fn dom ( E |` ran F ) -> ( # ` ( E |` ran F ) ) = ( # ` dom ( E |` ran F ) ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( ( E : dom E -1-1-> ran E /\ E e. V ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E ) -> ( # ` ( E |` ran F ) ) = ( # ` dom ( E |` ran F ) ) ) | 
						
							| 16 |  | ovex |  |-  ( 0 ..^ ( # ` F ) ) e. _V | 
						
							| 17 |  | fex |  |-  ( ( F : ( 0 ..^ ( # ` F ) ) --> dom E /\ ( 0 ..^ ( # ` F ) ) e. _V ) -> F e. _V ) | 
						
							| 18 | 1 16 17 | sylancl |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> F e. _V ) | 
						
							| 19 |  | rnexg |  |-  ( F e. _V -> ran F e. _V ) | 
						
							| 20 | 18 19 | syl |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ran F e. _V ) | 
						
							| 21 |  | simpll |  |-  ( ( ( E : dom E -1-1-> ran E /\ E e. V ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E ) -> E : dom E -1-1-> ran E ) | 
						
							| 22 |  | f1ssres |  |-  ( ( E : dom E -1-1-> ran E /\ ran F C_ dom E ) -> ( E |` ran F ) : ran F -1-1-> ran E ) | 
						
							| 23 | 21 3 22 | syl2anc |  |-  ( ( ( E : dom E -1-1-> ran E /\ E e. V ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E ) -> ( E |` ran F ) : ran F -1-1-> ran E ) | 
						
							| 24 |  | hashf1rn |  |-  ( ( ran F e. _V /\ ( E |` ran F ) : ran F -1-1-> ran E ) -> ( # ` ( E |` ran F ) ) = ( # ` ran ( E |` ran F ) ) ) | 
						
							| 25 | 20 23 24 | syl2an2 |  |-  ( ( ( E : dom E -1-1-> ran E /\ E e. V ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E ) -> ( # ` ( E |` ran F ) ) = ( # ` ran ( E |` ran F ) ) ) | 
						
							| 26 | 15 25 | eqtr3d |  |-  ( ( ( E : dom E -1-1-> ran E /\ E e. V ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E ) -> ( # ` dom ( E |` ran F ) ) = ( # ` ran ( E |` ran F ) ) ) | 
						
							| 27 | 8 26 | eqtr4id |  |-  ( ( ( E : dom E -1-1-> ran E /\ E e. V ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E ) -> ( # ` ( E " ran F ) ) = ( # ` dom ( E |` ran F ) ) ) | 
						
							| 28 |  | hashf1rn |  |-  ( ( ( 0 ..^ ( # ` F ) ) e. _V /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E ) -> ( # ` F ) = ( # ` ran F ) ) | 
						
							| 29 | 16 28 | mpan |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ( # ` F ) = ( # ` ran F ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ( E : dom E -1-1-> ran E /\ E e. V ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E ) -> ( # ` F ) = ( # ` ran F ) ) | 
						
							| 31 | 6 27 30 | 3eqtr4d |  |-  ( ( ( E : dom E -1-1-> ran E /\ E e. V ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E ) -> ( # ` ( E " ran F ) ) = ( # ` F ) ) | 
						
							| 32 | 31 | ex |  |-  ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ( # ` ( E " ran F ) ) = ( # ` F ) ) ) |