| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpeq1 |
|- ( H = if ( H e. SH , H , ~H ) -> ( H X. H ) = ( if ( H e. SH , H , ~H ) X. H ) ) |
| 2 |
|
xpeq2 |
|- ( H = if ( H e. SH , H , ~H ) -> ( if ( H e. SH , H , ~H ) X. H ) = ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) |
| 3 |
1 2
|
eqtrd |
|- ( H = if ( H e. SH , H , ~H ) -> ( H X. H ) = ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) |
| 4 |
3
|
reseq2d |
|- ( H = if ( H e. SH , H , ~H ) -> ( +h |` ( H X. H ) ) = ( +h |` ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) ) |
| 5 |
4
|
eleq1d |
|- ( H = if ( H e. SH , H , ~H ) -> ( ( +h |` ( H X. H ) ) e. AbelOp <-> ( +h |` ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) e. AbelOp ) ) |
| 6 |
|
helsh |
|- ~H e. SH |
| 7 |
6
|
elimel |
|- if ( H e. SH , H , ~H ) e. SH |
| 8 |
7
|
hhssabloi |
|- ( +h |` ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) e. AbelOp |
| 9 |
5 8
|
dedth |
|- ( H e. SH -> ( +h |` ( H X. H ) ) e. AbelOp ) |