Metamath Proof Explorer


Theorem hhssablo

Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008) (New usage is discouraged.)

Ref Expression
Assertion hhssablo HS+H×HAbelOp

Proof

Step Hyp Ref Expression
1 xpeq1 H=ifHSHH×H=ifHSH×H
2 xpeq2 H=ifHSHifHSH×H=ifHSH×ifHSH
3 1 2 eqtrd H=ifHSHH×H=ifHSH×ifHSH
4 3 reseq2d H=ifHSH+H×H=+ifHSH×ifHSH
5 4 eleq1d H=ifHSH+H×HAbelOp+ifHSH×ifHSHAbelOp
6 helsh S
7 6 elimel ifHSHS
8 7 hhssabloi +ifHSH×ifHSHAbelOp
9 5 8 dedth HS+H×HAbelOp